渐进分析练习题
渐进分析
Autumn, 2023
Consider the eigenvalue problem with \(0<\epsilon\ll1\):
where \(f\) is a given smooth function. Give the asymptotic expansion of \(\lambda\) such that the accuracy is \(O(\epsilon)\).
证明
设 \(\lambda=\lambda_0+\epsilon \lambda_1 + O(\epsilon^2)\),\(u=u_0+\epsilon u_1 + O(\epsilon^2)\),代入方程并比较各阶项:
由边界条件 \(u(0)=0\) 和 \(u'(1)=0\) 可得 \(u_0(0)=0\) 和 \(u_0'(1)=0\)。解第一个方程得到 \(\lambda_0 = \left( n - \frac{1}{2} \right)^2 \pi^2\),其中 \(n=1,2,3,\ldots\),对应取 \(u_0(x) = \sin\left( \left( n - \frac{1}{2} \right) \pi x \right)\)。
对第二个方程两边乘 \(u_0\) 并积分,得到
上式左边通过分部积分可化简为
故
因此
Autumn, 2024
Consider the following boundary value problem for \(y=y(x)\) on \([0, 1]\) as \(0<\epsilon\ll1\):
(i) Suppose \(\alpha=1\). Construct a composite expansion of the above problem and sketch the solution.
(ii) Construct a composite expansion of the above problem for \(\alpha=0\).
(iii) What is the accuracy of your solution in \(\epsilon\)? Formally explain your conclusion. Consider the first case only.
证明
\((i)\):当 \(\epsilon \to 0\) 时,\(y=1-x\) 不满足 \(y(1)=-1\) 的边界条件,因此在 \(x=1\) 处存在一个边界层。考虑原方程的齐次部分 \(\epsilon \lambda^2 + \epsilon(1+x)^2 \lambda - 1 \approx 0\)。其特征根约为 \(\lambda \approx \pm 1/\sqrt{\epsilon}\)。这说明边界层的厚度尺度为 \(\mathcal{O}(\sqrt{\epsilon})\)。设 \(\eta = \frac{1-x}{\sqrt{\epsilon}}\),\(y(x)=1-x+v(\eta)\),则 \(y_x=-\frac{1}{\sqrt{\epsilon}} v_\eta\),\(y_{xx}=\frac{1}{\epsilon} v_{\eta\eta}\),代入保留 \(O(1)\) 项得到:
解得 \(v(\eta)=A e^{\eta}+B e^{-\eta}\)。由于 \(v(\eta)\) 在 \(\eta \to \infty\) 时必须有界,故 \(A=0\)。边界条件 \(y(1)=-1\) 即 \(v(0)=-1\),解得 \(B=-1\)。因此
\((ii)\):当 \(\epsilon \to 0\) 时,\(y=1-x\) 不满足 \(y(0)=0\) 的边界条件,因此在 \(x=0\) 处也存在一个边界层。同上考虑 \(\xi = \frac{x}{\sqrt{\epsilon}}\),\(y(x)=1-x+u(\xi)+v(\eta)\),代入保留 \(O(1)\) 项得到:
解得 \(u(\xi)=C e^{\xi}+D e^{-\xi}\)。进一步有 \(D=0,C=-1\),故
\((iii)\):
Spring, 2025
Consider a harmonic oscillator with a cubic damping term
where \(y=y(t)\), \(t\ge0\), \(\epsilon>0\), \(y(0)=1\), \(y^{\prime}(0)=0\).
(i) For small \(\epsilon\), use the multiple-scale method to study the behavior of \(y(t)\) for large \(t\), i.e., construct a proper asymptotic solution.
(ii) Make a conclusion on the validity of your asymptotic solution. Briefly justify your conclusion.
证明
\((a)\):
\((b)\):该近似解在 \(t< \frac{4}{3\epsilon}\) 的时间尺度上保持有效,且误差为 \(O(\epsilon)\)。当 \(t\) 接近 \(\frac{4}{3\epsilon}\) 时,近似解的振幅趋于无穷大,因此该近似解在 \(t \geq \frac{4}{3\epsilon}\) 的时间尺度上失效。
Autumn, 2025
Consider the so-called Rayleigh oscillator
with initial condition \(y(0)=0, y'(0)=2a\) where \(y=y(t)\), \(a>0\).
(a) For a small \(\epsilon\), construct an approximation of the solution to the above problem which is valid for large \(t\).
(b) What is the accuracy of this approximation? State a conclusion and briefly explain it.
(c) Plot the approximated orbits in the phase plane, i.e., \(y-y'\) plane for several different \(a\). And explain what you observe.
证明
\((a)\): 设 \(y(t,\epsilon)=y_0(t^+,\tau)+\epsilon y_1(t^+,\tau)+\cdots\),其中快时间尺度 \(t^+=t\),慢时间尺度 \(\tau=\epsilon t\)。
关于时间的导数:
下简记 \(t^+\) 为 \(t\),则
由 \(O(1)\) 项可得
解得 \(y_0(t,\tau)=R(\tau)\cos(t+\phi(\tau))\)。
由 \(O(\epsilon)\) 项可得
为了保证 \(y_1\) 的有界性,必须消除 \(\sin\psi\) 和 \(\cos\psi\) 的共振项,即
解得 \(R(\tau)=\frac{2}{\sqrt{1-C e^{-\tau}}}\),\(\phi(\tau)=\phi_0\),其中 \(C\) 和 \(\phi_0\) 由初值条件确定。最终得到近似解
\((b)\): 该近似解的误差为 \(O(\epsilon)\),且在 \(t=O(\epsilon^{-1})\) 的时间尺度上保持有效。
\((c)\):在相平面上,\(t\rightarrow \infty\) 时,振幅 \(R(\tau)\) 收敛到 \(2\),因此所有轨道最终都会趋近于一个半径为 \(2\) 的圆周。