函数逼近与插值练习题
函数逼近与插值
Autumn, 2024
The \(n\)-th Chebyshev polynomial is defined by: \(T_{n}(x)=\cos(n\cdot \arccos(x))\). Answer the following questions related to \(T_{n}(x)\).
(i) Prove that \(T_{n}(x)\) is a polynomial of degree \(n\).
(ii) For any \(x\) with \(0<x<1\), show that \(T_{n}(2x-1)=T_{2n}(\sqrt{x})\).
(iii) Prove that the system of Chebyshev polynomials \(\{T_{k}:0\le k<n\}\) is orthogonal with respect to the discrete inner product \((u,v)=\sum_{k=1}^{n}u(x_{k})v(x_{k})\), where \(\{x_{k}\}\) are the Chebyshev points \(x_{k}=\cos(\frac{2k-1}{2n}\pi)\).
Autumn, 2024
Consider Kepler's equation
(i) Show that for each \(\epsilon, \eta\), there is exactly one real root \(\alpha=\alpha(\epsilon,\eta)\). Furthermore, \(\eta-|\epsilon|\le\alpha\le\eta+|\epsilon|\).
(ii) Writing the equation in fixed point form:
show that the fixed point iteration \(x_{n+1}=\varphi(x_{n})\) converges for arbitrary starting value \(x_{0}\).
(iii) Let \(m\) be an integer such that \(m\pi<\eta<(m+1)\pi\). Show that Newton's method with starting value
is guaranteed to converge (monotonically) to \(\alpha(\epsilon,\eta)\).
Spring, 2025
Let \(f\) be a continuous function that is \(C^{m}(m\ge1)\), such that \(f(\alpha)=f^{(1)}(\alpha)=\cdots=f^{(m-1)}(\alpha)=0\) and \(f^{(m)}(\alpha)\ne0\). Answer the following questions:
(i) If \(m=1\), i.e. \(\alpha\) is a simple zero of the function \(f\), prove that there exists a neighborhood of \(\alpha\): \(D(\alpha,\delta)=\{x:|x-\alpha|\le\delta\}\) s.t. \(\forall x_{0}\in D(\alpha,\delta)\), the sequence generated by Newton's iteration converges to \(\alpha\), and the rate of convergence is quadratic.
(ii) If \(m>1\), i.e. \(\alpha\) is a zero with multiplicity greater than 1, what is the rate of convergence of Newton's iteration? How about the modified Newton's iteration:
Please prove your results.
(iii) If the multiplicity \(m\) is greater than 1 in general but the value is unknown, can you propose an iteration method that achieves superlinear convergence? (You don't need to prove the result.)
证明
\((i)\):Newton iteration 的迭代函数为 \(g(x)=x-\frac{f(x)}{f'(x)}\),由 \(f(\alpha)=0\),\(g(\alpha)=\alpha\),又由 \(f'(\alpha)\ne0\),\(g'(\alpha)=0\),在 \(\alpha\) 处对 \(g\) 作 Taylor 展开,得到
于是对 \(e_k=x_k-\alpha\),有
由不动点定理存在 \(\alpha\) 的邻域满足 \(|g'(x)|<1\) 使得迭代收敛。结合误差关系有收敛阶为二次。
\((ii)\):设 \(f(x)=(x-\alpha)^m h(x)\),其中 \(h(\alpha)\ne0\),则 Newton iteration 的迭代函数为
由 \(g(\alpha)=\alpha\),又由 \(g'(\alpha)=\frac{m-1}{m}\),在 \(\alpha\) 处对 \(g\) 作 Taylor 展开,得到
于是对 \(e_k=x_k-\alpha\),有
为线性收敛。
再考虑 \(x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}\) 的迭代函数为 \(\tilde{g}(x) = x - m \frac{f(x)}{f'(x)}\),由 \(\tilde{g}(\alpha)=\alpha\),又由 \(\tilde{g}'(\alpha)=0\),在 \(\alpha\) 处对 \(\tilde{g}\) 作 Taylor 展开,得到
于是对 \(e_k=x_k-\alpha\),有
由不动点定理存在 \(\alpha\) 的邻域满足 \(|\tilde{g}'(x)|<1\) 使得迭代收敛。结合误差关系有收敛阶为二次。
\((iii)\):可以考虑函数 \(\frac{f(x)}{f'(x)}\) 的 Newton iteration,无论 \(m\) 的值如何,该函数零点的重数都为 1,因此该迭代方法都能达到二次收敛。
Autumn, 2025
For any continuous function \(f\), define \(\|f\|_\infty = \max_{x \in [-1, 1]} |f(x)|\). Define the \(n\)-th Chebyshev polynomial by: \(T_0(x)=1, T_1(x)=x, T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)\).
(a) Show that
(b) Prove that \(\min_{\deg p \le n, p(1)=1} \|p\|_\infty = 1\) which is attained at \(p = T_n\).
(c) For \(f \in C^{n+1}[-1, 1]\), choose the interpolation nodes \(x_0, x_1, \dots, x_n\) as the \(n+1\) zeros of \(T_{n+1}(x)\), and denote its degree-\(n\) interpolation polynomial by \(L_n\). Prove
(d) For \(f \in C^{2n+2}[-1, 1]\), derive the Gauss quadrature formula of \(I(f) = \int_{-1}^1 \frac{f(x)}{\sqrt{1-x^2}} dx\) for \(n+1\) quadrature nodes, written by \(I_{n+1}(f)\), and prove
证明
\((a)\):归纳即证。
\((b)\): 设 \(p(x) = \sum_{k=0}^n a_k T_k(x)\),则 \(1 = p(1) = \sum_{k=0}^n a_k\)。又因为 \(|T_k(x)| \le 1\),所以 \(\|p\|_\infty \ge \sum_{k=0}^n a_k = 1\)。
\((c)\): 设 \(f(x)\) 在 \([-1,1]\) 上的 Taylor 展开为
因此
故
\((d)\): \(n+1\) 点 Gauss-Chebyshev 求积公式为:
故误差
.
For distinct points \(\left\{x_j\right\}_{j=0}^n\), denote \(l_j(x)\) by the Lagrange basis function. Show that it holds
证明
设 \(p(x) = \sum_{j=0}^n (x_j-x)^k l_j(x)\),则 \(p(x_j) = 0\) 对 \(j=0,1,\ldots,n\) 成立,因此 \(p(x)\) 有 \(n+1\) 个不同的根。又因为 \(p(x)\) 的次数不超过 \(n\),所以 \(p(x)\) 必须是零多项式,即得。
.
If \(a > 0\), then \(\alpha = \sqrt{a}\) is a root of either equation
(i)Explain why Newton's method applied to the first equation converges for arbitrary starting value \(x_0 > 0\), whereas the same method applied to the second equation produces positive iterates \(x_n\) converging to \(\alpha\) only if \(x_0\) is in some interval \(0 < x_0 < b\). Determine \(b\).
(ii)Do the same as (i), but for the cube root \(\sqrt[3]{a}\) and the equations
证明
\((i)\): 对于方程 \(x^2 - a = 0\),Newton's method 的迭代公式为
若 \(x_n\ge 2\alpha\),则 \(x_{n+1}\le \frac{1}{2}x_n+\frac{1}{2}\frac{x_n^2/4}{x_n} = \frac{5}{8}x_n\),因此 \(x_{n+1}\) 会逐渐减小,最终收敛到小于 \(2\alpha\)。
进而有
也收敛到零。
其余类似。
2011 Individual
Problem 1. Given a weight function \(\rho(x)>0\), let the inner-product corresponding to \(\rho(x)\) be defined as follows:
and let \(\|f\| := \sqrt{(f,f)}\).
-
(a) Define a sequence of polynomials as follows:
\[ \begin{aligned} &p_0(x)=1,\quad p_1(x)=x-a_1,\\ &p_n(x)=(x-a_n)p_{n-1}(x)-b_n p_{n-2}(x),\quad n=2,3,\ldots \end{aligned} \]where
\[ \begin{aligned} a_n &= \frac{(x p_{n-1}, p_{n-1})}{(p_{n-1}, p_{n-1})}, \quad n=1,2,\ldots,\\ b_n &= \frac{(x p_{n-1}, p_{n-2})}{(p_{n-2}, p_{n-2})}, \quad n=2,3,\ldots. \end{aligned} \]Show that \(\{p_n(x)\}\) is an orthogonal sequence of monic polynomials.
-
(b) Let \(\{q_n(x)\}\) be an orthogonal sequence of monic polynomials corresponding to the inner product defined by \(\rho\). (A polynomial is called monic if its leading coefficient is 1.) Show that \(\{q_n(x)\}\) is unique and it minimizes \(\|q_n\|\) amongst all monic polynomials of degree \(n\).
-
(c) Hence or otherwise, show that if \(\rho(x)=\frac{1}{\sqrt{1-x^2}}\) and \([a,b]=[-1,1]\), then the corresponding orthogonal sequence is the Chebyshev polynomials:
\[ T_n(x)=\cos(n \arccos x), \quad n=0,1,2,\ldots \]and the following recurrent formula holds:
\[ T_{n+1}(x)=2x T_n(x)-T_{n-1}(x), \quad n=1,2,\ldots. \] -
(d) Find the best quadratic approximation to \(f(x)=x^3\) on \([-1,1]\) using \(\rho(x)=\frac{1}{\sqrt{1-x^2}}\).
证明
\((a)\): 结合归纳法注意到
即得。
\((b)\): 唯一性:我们归纳证明对每个 \(n\),\(q_n\) 唯一。对于 \(n=0\),显然 \(q_0(x)=1\) 唯一。假设 \(q_0,\cdots,q_{k-1}\) 唯一。若存在两个不同的多项式 \(q_k(x)\) 和 \(\tilde{q}_k(x)\),则它们的差 \(r_k(x)=q_k(x)-\tilde{q}_k(x)\) 是一个次数不超过 \(k-1\) 的多项式,并且满足 \((r_k, q_i)=0,i=0,\cdots,k-1\)。由归纳假设,\(q_i\) 是唯一的,因此 \(r_k(x)\) 必须是零多项式,从而 \(q_k(x)=\tilde{q}_k(x)\)。
最小性:设 \(p(x)\) 是任意一个次数为 \(n\) 的首一多项式,则 \(p(x)-q_n(x)\) 是一个次数不超过 \(n-1\) 的多项式,因此 \((p-q_n, q_n)=0\)。于是
\((c)\): 结合 \((a)\) 的递推和 \((b)\) 的唯一性可知,所求正交多项式序列满足要求。
\((d)\):设最佳二次近似为 \(p(x)=c_0 T_0(x)+c_1 T_1(x)+c_2 T_2(x)\),则由正交性条件
因此最佳二次近似为
2011 Individual
Problem 2. If two polynomials \(p(x)\) and \(q(x)\), both of fifth degree, satisfy
and \(p(1)=1\), \(q(1)=2\). Find \(p(0)-q(0)\).
解
注意到 \(p(x)-q(x)\) 有五个不同的根 \(2,3,4,5,6\),因此
带入 \(x=1\) 可得 \(k=\frac{1-2}{(1-2)(1-3)(1-4)(1-5)(1-6)}=\frac{1}{5!}\),因此 \(p(0)-q(0)=k(0-2)(0-3)(0-4)(0-5)(0-6)=6\)。
2012 Individual
Problem 2. Here is the definition of a moving least square approximation of a function \(f(x)\) near a point \(\overline{x}\) given \(K\) points \(x_k\) around \(\overline{x}\) in \(\mathbb{R}, k=1,\ldots,K\):
where \(f_k = f(x_k)\), \(\Pi_m\) is the space of polynomials of degree less or equal to \(m\), i.e.
\(c(\overline{x}) = [c_0, c_1, \ldots, c_m]^T\) is the coefficient vector to be determined by the minimization, \(b_{\overline{x}}(x)\) is the polynomial basis vector, \(b_{\overline{x}}(x) = [1, x-\overline{x}, (x-\overline{x})^2, \ldots, (x-\overline{x})^m]^T\). Assume that there are \(K > m\) different points \(x_k\) and \(f(x)\) is smooth.
- (a) Prove that there is a unique solution \(P_{\overline{x}}(x)\) to the minimization problem.
-
(b) Denote \(h = \max_k |x_k - \overline{x}|\), prove
\[ \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| = C(f,i) h^{m+1-i}, \quad i=0,1,\ldots,m, \]where \(f^{(i)}(\cdot)\) is the \(i\)-th derivative of \(f\) and \(C(f,i)\) denotes some constant depending on \(f\) and \(i\).
-
(c) If \(S = \{x_k \mid k=1,2,\ldots,K\}\) are symmetrically distributed around \(\overline{x}\), that is, if \(x_k \in S\) then \(2\overline{x}-x_k \in S\), prove that
\[ \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| = C(f,i) h^{m+2-i}, \quad i=0,1,\ldots,m, \]for \(i\) (in \(\{0,1,\ldots,m\}\)) with the same parity as \(m\).
证明
\((a)\):即找 \(c_i\) 使得
对 \(c_j\) 求导并令其为零,得到线性方程组
容易得到 \(\mathbf{b}^T \mathbf{b}\) 是正定矩阵,因此该方程组有唯一解 \(\mathbf{c}=(\mathbf{b}^T \mathbf{b})^{-1} \sum_{k=1}^{K} f_k \mathbf{b}(x_k)\)。
\((b)\):设 \(f(x)\) 在 \(\overline{x}\) 处的 Taylor 展开为
故
其中 \(\mathbf{e}_i=(\mathbf{b}^T \mathbf{b})^{-1} \sum_{k=1}^{K} b_j(x_k) \mathbf{b}(x_k)\) 是单位向量,因此
\((c)\):设 \(f(x)\) 在 \(\overline{x}\) 处的 Taylor 展开为
同理可得
2014 Team
Problem 4. Let
where
with
Here \(P^k(I_j)\) denotes the set of polynomials of degree at most \(k\) in the interval \(I_j\). Recall the \(L^2\) projection of a function \(u(x)\) into the space \(V_h\) is defined by the unique function \(u_h \in V_h\) which satisfies
where the norm is the usual \(L^2\) norm. We assume \(u(x)\) has at least \(k+2\) continuous derivatives.
-
(a) Prove the error estimate
\[ \|u - u_h\| \leq C h^{k+1}. \]Explain how the constant \(C\) depends on the derivatives of \(u(x)\).
-
(b) If another function \(\varphi(x)\) also has at least \(k+2\) continuous derivatives, prove
\[ \left| \int_0^1 (u(x) - u_h(x)) \varphi(x) dx \right| \leq C h^{2k+2}. \]Explain how the constant \(C\) depends on the derivatives of \(u(x)\) and \(\varphi(x)\).
证明
\((a)\): 对每个子区间 \(I_j\),我们将 \(u(x)\) 在 \(I_j\) 上用 \(k\) 次泰勒多项式 \(p_j(x)\) 近似,则由泰勒公式可知
故
由于 \(u_h\) 是 \(u\) 在 \(V_h\) 上的最佳 \(L^2\) 近似多项式,因此
\((b)\): 设 \(\pi_h \varphi\) 是 \(\varphi\) 在 \(V_h\) 上的最佳 \(L^2\) 近似多项式,则
2014 Team
For the interval \([0, \pi]\), we divide it into \(N + 1\) equally spaced subintervals by using the nodal points:
with
For any continuous function \(w\) on \([0, \pi]\), we define \(\Pi_h w\) to be the piecewise linear interpolation of \(w\), namely \(\Pi_h w\) is linear on each subinterval \((x_i, x_{i+1})\) for \(i = 0, 1, \cdots, N\), and it takes the same values as \(w\) at all nodal points \(x_i, i = 0, 1, \cdots, N + 1\). For any function \(w\), we define
Prove the following estimates for any function \(u \in C^2[0, \pi]\):
证明
设 \(f=u-\Pi_h u\),由柯西不等式我们对 \(x\in [x_i,x_{i+1}]\) 有
故
又
因此
综上我们有
求和得
2012 Team
Problem 1. If the function \(u(x)\) is in \(C^{k+1}\) (has continuous \((k+1)\)-th derivative) on the interval \([0,2]\), and a sequence of polynomials \(p_n(x)\) (\(n=1,2,3,\ldots\)) of degree at most \(k\) satisfies
where the constant \(C\) is independent of \(n\), prove
with another constant \(\tilde{C}\) which is also independent of \(n\).
证明
取 \(u(x)\) 在区间 \([0,\frac{1}{n}]\) 上的 \(k\) 次插值多项式 \(q_n(x)\),记 \(x_j^n=\frac{j}{nk}\),则
则对 \(\frac{1}{n}\le x\le \frac{2}{n}\),有
而对 \(\frac{1}{n}\le x\le \frac{2}{n}\),有
其中
最后我们有
2017 Individual
Problem 3. Consider a piecewise smooth function
where \(f_1(x)\) is a \(C^\infty\) function on \((-\infty,0]\) and \(f_2(x)\) is a \(C^\infty\) function on \([0,\infty)\), but \(f_1(0) \neq f_2(0)\). Suppose \(p(x)\) is a \(k\)-th degree polynomial (\(k \geq 1\)) interpolating \(f(x)\) at \(k+1\) equally-spaced grid points \(x_j, j=0,1,2,\ldots,k\) with \(x_i < 0 < x_{i+1}\) for some \(i\) between \(0\) and \(k-1\). Prove that, when the grid size \(h = x_{j+1} - x_j\) is small enough, \(p'(x) \neq 0\) for \(x_i \leq x \leq x_{i+1}\), that is, \(p(x)\) is monotone in the interval \([x_i, x_{i+1}]\). (Hint: first prove the case when \(f_1(x) = c_1, f_2(x) = c_2\) and \(c_1 \neq c_2\) are two constants.)
2018 Individual
Problem (Hermite Polynomials). Define the Hermite polynomials as
-
(a) Prove the weighted orthogonality of the Hermite polynomials:
\[ \int_{-\infty}^{+\infty} \rho(x) H_n(x) H_m(x) dx = n! \sqrt{2\pi} \delta_{n,m}, \]where \(\rho(x) = \exp\left( -\frac{x^2}{2} \right)\).
-
(b) Prove the three-term recurrence formula:
\[ H_{n+1}(x) = x H_n(x) - n H_{n-1}(x), \quad n \geq 1, \]and then show that for all \(n \geq 1\), \(H_n(x)\) and \(H_{n-1}(x)\) share no common roots.
-
(c) Use the recurrence formula and induction to prove the differential relation:
\[ \frac{d}{dx} H_n(x) = n H_{n-1}(x), \quad n \geq 1, \]and then prove that \(H_n\) is an eigenfunction of the following eigenvalue problem
\[ x u'(x) - u''(x) = \lambda u. \]You need to find the eigenvalue \(\lambda_n\) corresponding to \(H_n(x)\).
2019 Team
Let \(x=(x_0,\cdots,x_{N-1})\in \mathbb{R}^N\),\(x\neq 0\) and \(\hat{x}\) be its discrete Fourier transform, i.e.,
Prove that \(\|x\|_0\|\hat{x}\|_0 \geq N\), where \(\|x\|_0\) is the number of nonzero entries of \(x\).(Hint: show that \(\hat{x}\) can not have \(\|x\|_0\) conescutive zeros.)
.
Problem 1. Let \(f\in C^{k+1}[-1,1]\) and \([-1,1]\) be partitioned into subintervals \(I_j=[(j-1)h,jh]\) of width \(h\). Assume \(p\) is a polynomial of degree \(k\) which approximates \(f\) in \(I_j\) with
where \(C_0\) is a constant indepentent of \(j\). Show that there exists an another constant \(C\), independent of \(j\), such that
(as long as \(I_{j\pm 1}\) \subset [-1,1], of course).
.
Problem 1. \((a)\) Show that
is a polynomial of degree \(n\) with extrema at
and leading coefficient \(2^{n-1}\).
\((b)\) Show that if \(f\in C^{n+1}[-1,1]\) and if \(P(x)\) is the polynomial with degree at most \(n\) that interpolates \(f\) at \(x_k,k=0,1,\ldots,n\), then
2012 Team
Problem 2. Let \(S(x)\) be a cubic spline with knots \(\{t_i\}_{i=0}^n\). If it is determined that \(S(x)\) is linear over \([t_1, t_2]\) and \([t_3, t_4]\), prove that \(S(x)\) is also linear over \([t_2, t_3]\).