跳转至

函数逼近与插值练习题

函数逼近与插值


Autumn, 2024

The \(n\)-th Chebyshev polynomial is defined by: \(T_{n}(x)=\cos(n\cdot \arccos(x))\). Answer the following questions related to \(T_{n}(x)\).

(i) Prove that \(T_{n}(x)\) is a polynomial of degree \(n\).

(ii) For any \(x\) with \(0<x<1\), show that \(T_{n}(2x-1)=T_{2n}(\sqrt{x})\).

(iii) Prove that the system of Chebyshev polynomials \(\{T_{k}:0\le k<n\}\) is orthogonal with respect to the discrete inner product \((u,v)=\sum_{k=1}^{n}u(x_{k})v(x_{k})\), where \(\{x_{k}\}\) are the Chebyshev points \(x_{k}=\cos(\frac{2k-1}{2n}\pi)\).

Autumn, 2024

Consider Kepler's equation

\[ f(x)=x-\epsilon \sin x-\eta, \quad (0<|\epsilon|<1), \quad \eta\in\mathbb{R}. \]

(i) Show that for each \(\epsilon, \eta\), there is exactly one real root \(\alpha=\alpha(\epsilon,\eta)\). Furthermore, \(\eta-|\epsilon|\le\alpha\le\eta+|\epsilon|\).

(ii) Writing the equation in fixed point form:

\[ x=\varphi(x), \quad \varphi(x)=\epsilon \sin x+\eta, \]

show that the fixed point iteration \(x_{n+1}=\varphi(x_{n})\) converges for arbitrary starting value \(x_{0}\).

(iii) Let \(m\) be an integer such that \(m\pi<\eta<(m+1)\pi\). Show that Newton's method with starting value

\[ x_{0}=\begin{cases} (m+1)\pi & \text{if } (-1)^{m}\sin(\eta) > 0, \\ m\pi & \text{otherwise}, \end{cases} \]

is guaranteed to converge (monotonically) to \(\alpha(\epsilon,\eta)\).

Spring, 2025

Let \(f\) be a continuous function that is \(C^{m}(m\ge1)\), such that \(f(\alpha)=f^{(1)}(\alpha)=\cdots=f^{(m-1)}(\alpha)=0\) and \(f^{(m)}(\alpha)\ne0\). Answer the following questions:

(i) If \(m=1\), i.e. \(\alpha\) is a simple zero of the function \(f\), prove that there exists a neighborhood of \(\alpha\): \(D(\alpha,\delta)=\{x:|x-\alpha|\le\delta\}\) s.t. \(\forall x_{0}\in D(\alpha,\delta)\), the sequence generated by Newton's iteration converges to \(\alpha\), and the rate of convergence is quadratic.

(ii) If \(m>1\), i.e. \(\alpha\) is a zero with multiplicity greater than 1, what is the rate of convergence of Newton's iteration? How about the modified Newton's iteration:

\[ x_{k+1}=x_{k}-m\frac{f(x_{k})}{f^{\prime}(x_{k})}? \]

Please prove your results.

(iii) If the multiplicity \(m\) is greater than 1 in general but the value is unknown, can you propose an iteration method that achieves superlinear convergence? (You don't need to prove the result.)

证明

\((i)\):Newton iteration 的迭代函数为 \(g(x)=x-\frac{f(x)}{f'(x)}\),由 \(f(\alpha)=0\)\(g(\alpha)=\alpha\),又由 \(f'(\alpha)\ne0\)\(g'(\alpha)=0\),在 \(\alpha\) 处对 \(g\) 作 Taylor 展开,得到

\[ x_{k+1}=g(x_k)=\alpha + \frac{g''(\xi)}{2}(x_k-\alpha)^2, \]

于是对 \(e_k=x_k-\alpha\),有

\[ e_{k+1} = \frac{g''(\xi)}{2} e_k^2, \]

由不动点定理存在 \(\alpha\) 的邻域满足 \(|g'(x)|<1\) 使得迭代收敛。结合误差关系有收敛阶为二次。

\((ii)\):设 \(f(x)=(x-\alpha)^m h(x)\),其中 \(h(\alpha)\ne0\),则 Newton iteration 的迭代函数为

\[ g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{(x-\alpha)^m h(x)}{m(x-\alpha)^{m-1}h(x)+(x-\alpha)^m h'(x)}. \]

\(g(\alpha)=\alpha\),又由 \(g'(\alpha)=\frac{m-1}{m}\),在 \(\alpha\) 处对 \(g\) 作 Taylor 展开,得到

\[ x_{k+1} = g(x_k) = \alpha + \frac{m-1}{m}(x_k-\alpha) + \frac{g''(\xi)}{2}(x_k-\alpha)^2, \]

于是对 \(e_k=x_k-\alpha\),有

\[ e_{k+1} = \frac{m-1}{m} e_k + \frac{g''(\xi)}{2} e_k^2, \]

为线性收敛。

再考虑 \(x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}\) 的迭代函数为 \(\tilde{g}(x) = x - m \frac{f(x)}{f'(x)}\),由 \(\tilde{g}(\alpha)=\alpha\),又由 \(\tilde{g}'(\alpha)=0\),在 \(\alpha\) 处对 \(\tilde{g}\) 作 Taylor 展开,得到

\[ x_{k+1} = \tilde{g}(x_k) = \alpha + \frac{\tilde{g}''(\xi)}{2}(x_k-\alpha)^2, \]

于是对 \(e_k=x_k-\alpha\),有

\[ e_{k+1} = \frac{\tilde{g}''(\xi)}{2} e_k^2, \]

由不动点定理存在 \(\alpha\) 的邻域满足 \(|\tilde{g}'(x)|<1\) 使得迭代收敛。结合误差关系有收敛阶为二次。

\((iii)\):可以考虑函数 \(\frac{f(x)}{f'(x)}\) 的 Newton iteration,无论 \(m\) 的值如何,该函数零点的重数都为 1,因此该迭代方法都能达到二次收敛。

Autumn, 2025

For any continuous function \(f\), define \(\|f\|_\infty = \max_{x \in [-1, 1]} |f(x)|\). Define the \(n\)-th Chebyshev polynomial by: \(T_0(x)=1, T_1(x)=x, T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)\).

(a) Show that

\[ T_n(x) = \begin{cases} \cos(n \arccos x), & |x| \le 1 \\ \cosh(n \operatorname{arccosh} x), & |x| > 1 \end{cases} \]

(b) Prove that \(\min_{\deg p \le n, p(1)=1} \|p\|_\infty = 1\) which is attained at \(p = T_n\).

(c) For \(f \in C^{n+1}[-1, 1]\), choose the interpolation nodes \(x_0, x_1, \dots, x_n\) as the \(n+1\) zeros of \(T_{n+1}(x)\), and denote its degree-\(n\) interpolation polynomial by \(L_n\). Prove

\[ \|f - L_n\|_\infty \le \frac{\|f^{(n+1)}\|_\infty}{(n+1)! 2^n}. \]

(d) For \(f \in C^{2n+2}[-1, 1]\), derive the Gauss quadrature formula of \(I(f) = \int_{-1}^1 \frac{f(x)}{\sqrt{1-x^2}} dx\) for \(n+1\) quadrature nodes, written by \(I_{n+1}(f)\), and prove

\[ |I(f) - I_{n+1}(f)| \le \frac{\pi \|f^{(2n+2)}\|_\infty}{(2n+2)! 2^{2n+1}}. \]

证明

\((a)\):归纳即证。

\((b)\): 设 \(p(x) = \sum_{k=0}^n a_k T_k(x)\),则 \(1 = p(1) = \sum_{k=0}^n a_k\)。又因为 \(|T_k(x)| \le 1\),所以 \(\|p\|_\infty \ge \sum_{k=0}^n a_k = 1\)

\((c)\): 设 \(f(x)\)\([-1,1]\) 上的 Taylor 展开为

\[ f(x) = \sum_{k=0}^n \frac{f^{(k)}(-1)}{k!} (x+1)^k + R_{n+1}(x), \]

因此

\[ \begin{aligned} f(x) - L_n(x) &= \sum_{k=0}^n \frac{f^{(k)}(-1)}{k!} (x+1)^k + R_{n+1}(x) - \sum_{k=0}^n \frac{f^{(k)}(-1)}{k!} (x+1)^k\\ &= R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^n (x - x_k). \end{aligned} \]

\[ \|f - L_n\|_\infty \le \frac{\|f^{(n+1)}\|_\infty}{(n+1)!} \max_{x \in [-1, 1]} \left| \prod_{k=0}^n (x - x_k) \right| = \frac{\|f^{(n+1)}\|_\infty}{(n+1)! 2^n}. \]

\((d)\)\(n+1\) 点 Gauss-Chebyshev 求积公式为:

\[ I_{n+1}(f) = \frac{\pi}{n+1} \sum_{k=0}^n f\left(\cos\left(\frac{2k+1}{2n+2}\pi\right)\right) \]

故误差

\[ \begin{aligned} E_{n+1}(f) = I(f) - I_{n+1}(f) &= \frac{f^{(2n+2)}(\eta)}{(2n+2)!} \int_{-1}^1 \frac{1}{\sqrt{1-x^2}} \left[ \frac{T_{n+1}(x)}{2^n} \right]^2 dx\\ &\le \frac{\pi \|f^{(2n+2)}\|_\infty}{(2n+2)! 2^{2n+1}}. \end{aligned} \]

.

For distinct points \(\left\{x_j\right\}_{j=0}^n\), denote \(l_j(x)\) by the Lagrange basis function. Show that it holds

\[ \sum_{j=0}^n (x_j-x)^k l_j(x) = 0, \quad k=1,\ldots,n. \]

证明

\(p(x) = \sum_{j=0}^n (x_j-x)^k l_j(x)\),则 \(p(x_j) = 0\)\(j=0,1,\ldots,n\) 成立,因此 \(p(x)\)\(n+1\) 个不同的根。又因为 \(p(x)\) 的次数不超过 \(n\),所以 \(p(x)\) 必须是零多项式,即得。

.

If \(a > 0\), then \(\alpha = \sqrt{a}\) is a root of either equation

\[ x^2 - a = 0, \quad \frac{a}{x^2} - 1 = 0. \]

(i)Explain why Newton's method applied to the first equation converges for arbitrary starting value \(x_0 > 0\), whereas the same method applied to the second equation produces positive iterates \(x_n\) converging to \(\alpha\) only if \(x_0\) is in some interval \(0 < x_0 < b\). Determine \(b\).

(ii)Do the same as (i), but for the cube root \(\sqrt[3]{a}\) and the equations

\[ x^3 - a = 0, \quad \frac{a}{x^3} - 1 = 0. \]

证明

\((i)\): 对于方程 \(x^2 - a = 0\),Newton's method 的迭代公式为

\[ x_{n+1} = x_n - \frac{x_n^2 - a}{2 x_n} = \frac{1}{2} \left( x_n + \frac{a}{x_n} \right). \]

\(x_n\ge 2\alpha\),则 \(x_{n+1}\le \frac{1}{2}x_n+\frac{1}{2}\frac{x_n^2/4}{x_n} = \frac{5}{8}x_n\),因此 \(x_{n+1}\) 会逐渐减小,最终收敛到小于 \(2\alpha\)

\[ e_{n+1} = \frac{e_n^2}{2 x_n} \leq \frac{e_n^2}{2 \alpha}, \]

进而有

\[ \frac{e_{n+1}}{2\alpha}\le \left( \frac{e_n}{2\alpha} \right)^2\le \cdots \le \left( \frac{e_0}{2\alpha} \right)^{2^n}. \]

也收敛到零。

其余类似。

2011 Individual

Problem 1. Given a weight function \(\rho(x)>0\), let the inner-product corresponding to \(\rho(x)\) be defined as follows:

\[ (f,g):=\int_a^b \rho(x) f(x) g(x) dx, \]

and let \(\|f\| := \sqrt{(f,f)}\).

  • (a) Define a sequence of polynomials as follows:

    \[ \begin{aligned} &p_0(x)=1,\quad p_1(x)=x-a_1,\\ &p_n(x)=(x-a_n)p_{n-1}(x)-b_n p_{n-2}(x),\quad n=2,3,\ldots \end{aligned} \]

    where

    \[ \begin{aligned} a_n &= \frac{(x p_{n-1}, p_{n-1})}{(p_{n-1}, p_{n-1})}, \quad n=1,2,\ldots,\\ b_n &= \frac{(x p_{n-1}, p_{n-2})}{(p_{n-2}, p_{n-2})}, \quad n=2,3,\ldots. \end{aligned} \]

    Show that \(\{p_n(x)\}\) is an orthogonal sequence of monic polynomials.

  • (b) Let \(\{q_n(x)\}\) be an orthogonal sequence of monic polynomials corresponding to the inner product defined by \(\rho\). (A polynomial is called monic if its leading coefficient is 1.) Show that \(\{q_n(x)\}\) is unique and it minimizes \(\|q_n\|\) amongst all monic polynomials of degree \(n\).

  • (c) Hence or otherwise, show that if \(\rho(x)=\frac{1}{\sqrt{1-x^2}}\) and \([a,b]=[-1,1]\), then the corresponding orthogonal sequence is the Chebyshev polynomials:

    \[ T_n(x)=\cos(n \arccos x), \quad n=0,1,2,\ldots \]

    and the following recurrent formula holds:

    \[ T_{n+1}(x)=2x T_n(x)-T_{n-1}(x), \quad n=1,2,\ldots. \]
  • (d) Find the best quadratic approximation to \(f(x)=x^3\) on \([-1,1]\) using \(\rho(x)=\frac{1}{\sqrt{1-x^2}}\).

证明

\((a)\): 结合归纳法注意到

\[ \begin{aligned} (p_n,p_{n-1})&=(x p_{n-1}, p_{n-1}) - a_n (p_{n-1}, p_{n-1}) - b_n (p_{n-2}, p_{n-1}) = (x p_{n-1}, p_{n-1}) - a_n (p_{n-1}, p_{n-1}) = 0.\\ (p_n,p_{n-2})&=(x p_{n-1}, p_{n-2}) - a_n (p_{n-1}, p_{n-2}) - b_n (p_{n-2}, p_{n-2}) = (x p_{n-1}, p_{n-2}) - b_n (p_{n-2}, p_{n-2}) = 0.\\ \end{aligned} \]

即得。

\((b)\): 唯一性:我们归纳证明对每个 \(n\)\(q_n\) 唯一。对于 \(n=0\),显然 \(q_0(x)=1\) 唯一。假设 \(q_0,\cdots,q_{k-1}\) 唯一。若存在两个不同的多项式 \(q_k(x)\)\(\tilde{q}_k(x)\),则它们的差 \(r_k(x)=q_k(x)-\tilde{q}_k(x)\) 是一个次数不超过 \(k-1\) 的多项式,并且满足 \((r_k, q_i)=0,i=0,\cdots,k-1\)。由归纳假设,\(q_i\) 是唯一的,因此 \(r_k(x)\) 必须是零多项式,从而 \(q_k(x)=\tilde{q}_k(x)\)

最小性:设 \(p(x)\) 是任意一个次数为 \(n\) 的首一多项式,则 \(p(x)-q_n(x)\) 是一个次数不超过 \(n-1\) 的多项式,因此 \((p-q_n, q_n)=0\)。于是

\[ \|p\|^2 = \|q_n\|^2 + \|p-q_n\|^2 \geq \|q_n\|^2, \]

\((c)\): 结合 \((a)\) 的递推和 \((b)\) 的唯一性可知,所求正交多项式序列满足要求。

\((d)\):设最佳二次近似为 \(p(x)=c_0 T_0(x)+c_1 T_1(x)+c_2 T_2(x)\),则由正交性条件

\[ \begin{aligned} c_0 &= \frac{(f,T_0)}{(T_0,T_0)} = \frac{\int_{-1}^1 \frac{x^3}{\sqrt{1-x^2}} dx}{\int_{-1}^1 \frac{1}{\sqrt{1-x^2}} dx} = 0,\\ c_1 &= \frac{(f,T_1)}{(T_1,T_1)} = \frac{\int_{-1}^1 \frac{x^4}{\sqrt{1-x^2}} dx}{\int_{-1}^1 \frac{x^2}{\sqrt{1-x^2}} dx} = \frac{3}{4}\\ c_2 &= \frac{(f,T_2)}{(T_2,T_2)} = \frac{\int_{-1}^1 \frac{x^3(2x^2-1)}{\sqrt{1-x^2}} dx}{\int_{-1}^1 \frac{(2x^2-1)^2}{\sqrt{1-x^2}} dx} = 0 \end{aligned} \]

因此最佳二次近似为

\[ p(x)=\frac{3}{4} T_1(x)=\frac{3}{4} x. \]

2011 Individual

Problem 2. If two polynomials \(p(x)\) and \(q(x)\), both of fifth degree, satisfy

\[ p(i)=q(i)=\frac{1}{i}, \quad i=2,3,4,5,6, \]

and \(p(1)=1\), \(q(1)=2\). Find \(p(0)-q(0)\).

注意到 \(p(x)-q(x)\) 有五个不同的根 \(2,3,4,5,6\),因此

\[ p(x)-q(x)=k(x-2)(x-3)(x-4)(x-5)(x-6) \]

带入 \(x=1\) 可得 \(k=\frac{1-2}{(1-2)(1-3)(1-4)(1-5)(1-6)}=\frac{1}{5!}\),因此 \(p(0)-q(0)=k(0-2)(0-3)(0-4)(0-5)(0-6)=6\)


2012 Individual

Problem 2. Here is the definition of a moving least square approximation of a function \(f(x)\) near a point \(\overline{x}\) given \(K\) points \(x_k\) around \(\overline{x}\) in \(\mathbb{R}, k=1,\ldots,K\):

\[ \min_{P_{\overline{x}} \in \Pi_m} \sum_{k=1}^{K} |P_{\overline{x}}(x_k)-f_k|^2, \]

where \(f_k = f(x_k)\), \(\Pi_m\) is the space of polynomials of degree less or equal to \(m\), i.e.

\[ P_{\overline{x}}(x) = b_{\overline{x}}(x)^T c(\overline{x}), \]

\(c(\overline{x}) = [c_0, c_1, \ldots, c_m]^T\) is the coefficient vector to be determined by the minimization, \(b_{\overline{x}}(x)\) is the polynomial basis vector, \(b_{\overline{x}}(x) = [1, x-\overline{x}, (x-\overline{x})^2, \ldots, (x-\overline{x})^m]^T\). Assume that there are \(K > m\) different points \(x_k\) and \(f(x)\) is smooth.

  • (a) Prove that there is a unique solution \(P_{\overline{x}}(x)\) to the minimization problem.
  • (b) Denote \(h = \max_k |x_k - \overline{x}|\), prove

    \[ \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| = C(f,i) h^{m+1-i}, \quad i=0,1,\ldots,m, \]

    where \(f^{(i)}(\cdot)\) is the \(i\)-th derivative of \(f\) and \(C(f,i)\) denotes some constant depending on \(f\) and \(i\).

  • (c) If \(S = \{x_k \mid k=1,2,\ldots,K\}\) are symmetrically distributed around \(\overline{x}\), that is, if \(x_k \in S\) then \(2\overline{x}-x_k \in S\), prove that

    \[ \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| = C(f,i) h^{m+2-i}, \quad i=0,1,\ldots,m, \]

    for \(i\) (in \(\{0,1,\ldots,m\}\)) with the same parity as \(m\).

证明

\((a)\):即找 \(c_i\) 使得

\[ \min_{c_i} \sum_{k=1}^{K} \left|\sum_{i=0}^m c_i b_i(x_k) - f_k\right|^2. \]

\(c_j\) 求导并令其为零,得到线性方程组

\[ \mathbf{b}^T \mathbf{b} \mathbf{c} = \sum_{k=1}^{K} f_k \mathbf{b}(x_k), \]

容易得到 \(\mathbf{b}^T \mathbf{b}\) 是正定矩阵,因此该方程组有唯一解 \(\mathbf{c}=(\mathbf{b}^T \mathbf{b})^{-1} \sum_{k=1}^{K} f_k \mathbf{b}(x_k)\)

\((b)\):设 \(f(x)\)\(\overline{x}\) 处的 Taylor 展开为

\[ f(x) = \sum_{i=0}^{m} \frac{f^{(i)}(\overline{x})}{i!}b_i(x) + R_{m+1}(x), \]

\[ f_k = \sum_{i=0}^{m} \frac{f^{(i)}(\bar{x})}{i!} b_i(x_k) + R_{m+1}(x_k). \]
\[ \begin{aligned} \mathbf{c} &= (\mathbf{b}^T \mathbf{b})^{-1} \sum_{k=1}^{K} \left( \sum_{j=0}^{m} \frac{f^{(j)}(\bar{x})}{j!} b_j(x_k) + R_{m+1}(x_k) \right) \mathbf{b}(x_k) \\ &= \sum_{j=0}^{m} \frac{f^{(j)}(\bar{x})}{j!} \mathbf{e}_i+ (\mathbf{b}^T \mathbf{b})^{-1}\sum_{k=1}^{K} R_{m+1}(x_k) \mathbf{b}(x_k) \\ \end{aligned} \]

其中 \(\mathbf{e}_i=(\mathbf{b}^T \mathbf{b})^{-1} \sum_{k=1}^{K} b_j(x_k) \mathbf{b}(x_k)\) 是单位向量,因此

\[ \begin{aligned} \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| &\leq \sum_k\sum_j |(\mathbf{b}^T \mathbf{b})^{-1}_{ij}| |R_{m+1}(x_k)| |b_j(x_k)|\\ &=\sum_k\sum_j O(h^{-i-j})\cdot O(h^{m+1})\cdot O(h^j)=C(f,i) h^{m+1-i}. \end{aligned} \]

\((c)\):设 \(f(x)\)\(\overline{x}\) 处的 Taylor 展开为

\[ f(x) = \sum_{i=0}^{m} \frac{f^{(i)}(\overline{x})}{i!}b_i(x) + \frac{f^{(m+1)}(\overline{x})}{i!}+ R_{m+2}(x), \]

同理可得

\[ \begin{aligned} \left| c_i - \frac{1}{i!} f^{(i)}(\overline{x}) \right| &\leq \sum_k\sum_j |(\mathbf{b}^T \mathbf{b})^{-1}_{ij}| |R_{m+2}(x_k)| |b_j(x_k)|\\ \end{aligned} \]

2014 Team

Problem 4. Let

\[ V_h = \{ v : v|_{I_j} \in P^k(I_j), \quad 1 \leq j \leq N \}, \]

where

\[ I_j = (x_{j-1}, x_j), \quad 1 \leq j \leq N \]

with

\[ x_j = jh, \quad h = \frac{1}{N}. \]

Here \(P^k(I_j)\) denotes the set of polynomials of degree at most \(k\) in the interval \(I_j\). Recall the \(L^2\) projection of a function \(u(x)\) into the space \(V_h\) is defined by the unique function \(u_h \in V_h\) which satisfies

\[ \|u - u_h\| \leq \|u - v\|, \quad \forall v \in V_h, \]

where the norm is the usual \(L^2\) norm. We assume \(u(x)\) has at least \(k+2\) continuous derivatives.

  • (a) Prove the error estimate

    \[ \|u - u_h\| \leq C h^{k+1}. \]

    Explain how the constant \(C\) depends on the derivatives of \(u(x)\).

  • (b) If another function \(\varphi(x)\) also has at least \(k+2\) continuous derivatives, prove

    \[ \left| \int_0^1 (u(x) - u_h(x)) \varphi(x) dx \right| \leq C h^{2k+2}. \]

    Explain how the constant \(C\) depends on the derivatives of \(u(x)\) and \(\varphi(x)\).

证明

\((a)\): 对每个子区间 \(I_j\),我们将 \(u(x)\)\(I_j\) 上用 \(k\) 次泰勒多项式 \(p_j(x)\) 近似,则由泰勒公式可知

\[ u - p_j= \frac{u^{(k+1)}(\xi_j)}{(k+1)!} (x - x_{j-1})^{k+1}, \quad x \in I_j, \]

\[ \|u-p_j\|_{L^2(I_j)} \leq \frac{h^{k+1}}{(k+1)!} \max_{x \in I_j} |u^{(k+1)}(x)|. \]

由于 \(u_h\)\(u\)\(V_h\) 上的最佳 \(L^2\) 近似多项式,因此

\[ \|u - u_h\|\leq \sum_{j=1}^N \|u - p_j\|_{L^2(I_j)} \leq N \frac{h^{k+1}}{(k+1)!} \max_{x \in [0,1]} |u^{(k+1)}(x)|. \]

\((b)\): 设 \(\pi_h \varphi\)\(\varphi\)\(V_h\) 上的最佳 \(L^2\) 近似多项式,则

\[ \begin{aligned} \left| \int_0^1 (u(x) - u_h(x)) \varphi(x) dx \right| &= \left| \int_0^1 (u(x) - u_h(x)) (\varphi(x) - \pi_h \varphi(x)) dx \right|\\ &\leq \|u - u_h\| \cdot \|\varphi - \pi_h \varphi\|\\ &\leq C h^{k+1} \max_{x \in [0,1]} |u^{(k+1)}(x)| \cdot C h^{k+1} \max_{x \in [0,1]} |\varphi^{(k+1)}(x)| \end{aligned} \]

2014 Team

For the interval \([0, \pi]\), we divide it into \(N + 1\) equally spaced subintervals by using the nodal points:

\[0 = x_0 < x_1 < \cdots < x_{N+1} = \pi,\]

with

\[ \begin{align*} &x_i = i \, h, \quad h = \pi / (N + 1). \end{align*} \]

For any continuous function \(w\) on \([0, \pi]\), we define \(\Pi_h w\) to be the piecewise linear interpolation of \(w\), namely \(\Pi_h w\) is linear on each subinterval \((x_i, x_{i+1})\) for \(i = 0, 1, \cdots, N\), and it takes the same values as \(w\) at all nodal points \(x_i, i = 0, 1, \cdots, N + 1\). For any function \(w\), we define

\[ \|w\| = \left( \int_0^\pi w^2(x) dx \right)^{1/2}. \]

Prove the following estimates for any function \(u \in C^2[0, \pi]\):

\[ \|u - \Pi_h u\| \leq \frac{1}{\pi^2} h^2 \|u''\|, \quad \|u' - (\Pi_h u)'\| \leq \frac{1}{\pi} h \|u''\|. \]

证明

\(f=u-\Pi_h u\),由柯西不等式我们对 \(x\in [x_i,x_{i+1}]\)

\[ |f(x)|\le \int_{x_i}^x |f'(t)|dt \le \sqrt{x - x_i} \left( \int_{x_i}^{x_{i+1}} |f'(t)|^2 dt \right)^{1/2} \le \sqrt{h} \|f'\|_{L^2(x_i,x_{i+1})} \]

\[ \|f\|_{L^2(x_i,x_{i+1})}^2 \le h^2 \|f'\|_{L^2(x_i,x_{i+1})}^2 \]

\[ 0=\int_{x_i}^{x_{i+1}} (ff')' dx =\int_{x_i}^{x_{i+1}} (f')^2 dx + \int_{x_i}^{x_{i+1}} f f'' dx, \]

因此

\[ \|f'\|_{L^2(x_i,x_{i+1})}^2 \le \int_{x_i}^{x_{i+1}} |f f''| dx \le \|f\|_{L^2(x_i,x_{i+1})} \|f''\|_{L^2(x_i,x_{i+1})} \]

综上我们有

\[ \|f\|_{L^2(x_i,x_{i+1})}^2 \le h^4 \|f''\|_{L^2(x_i,x_{i+1})}^2 \]
\[ \|f'\|_{L^2(x_i,x_{i+1})}^2 \le h^2 \|f''\|_{L^2(x_i,x_{i+1})}^2 \]

求和得

\[ \|f\|^2 = \sum_{i=0}^{N} \|f\|_{L^2(x_i,x_{i+1})}^2 \le h^4 \|f''\|^2 \]
\[ \|f'\|^2 = \sum_{i=0}^{N} \|f'\|_{L^2(x_i,x_{i+1})}^2 \le h^2 \|f''\|^2 \]

2012 Team

Problem 1. If the function \(u(x)\) is in \(C^{k+1}\) (has continuous \((k+1)\)-th derivative) on the interval \([0,2]\), and a sequence of polynomials \(p_n(x)\) (\(n=1,2,3,\ldots\)) of degree at most \(k\) satisfies

\[ |u(x) - p_n(x)| \leq \frac{C}{n^{k+1}}, \quad \forall 0 \leq x \leq \frac{1}{n}, \]

where the constant \(C\) is independent of \(n\), prove

\[ |u(x) - p_n(x)| \leq \frac{\tilde{C}}{n^{k+1}}, \quad \forall \frac{1}{n} \leq x \leq \frac{2}{n}, \]

with another constant \(\tilde{C}\) which is also independent of \(n\).

证明

\(u(x)\) 在区间 \([0,\frac{1}{n}]\) 上的 \(k\) 次插值多项式 \(q_n(x)\),记 \(x_j^n=\frac{j}{nk}\),则

\[ q_n(x) = \sum_{i=0}^{k} u(x_i^n) l_i^n(x), l_j^n(x) = \prod_{\substack{0 \leq i \leq k \\ i \neq j}} \frac{x - x_m^n}{x_j^n - x_m^n}. \]

则对 \(\frac{1}{n}\le x\le \frac{2}{n}\),有

\[ |u(x)-q_n(x)|=\left| \frac{u^{(k+1)}(\xi_x)}{(k+1)!} (x - x_0^n)(x - x_1^n) \cdots (x - x_k^n) \right| \leq \frac{C_1}{(k+1)!} \left(\frac{2}{n}\right)^{k+1}\le \frac{C_2}{n^{k+1}}. \]

而对 \(\frac{1}{n}\le x\le \frac{2}{n}\),有

\[ |q_n(x)-p_n(x)| = \left| \sum_{i=0}^{k} (u(x_i^n) - p_n(x_i^n)) l_i^n(x) \right| \leq \frac{C}{n^{k+1}} \sum_{i=0}^{k} |l_i^n(x)| \leq \frac{C_3}{n^{k+1}}. \]

其中

\[ C_3 = C \sum_{j=0}^{k}\prod_{0\le i\le k,i\ne j}\frac{2k-i}{|j-i|} \]

最后我们有

\[ |u(x)-p_n(x)| \le |u(x)-q_n(x)| + |q_n(x)-p_n(x)| \le \frac{C_2+C_3}{n^{k+1}}. \]

2017 Individual

Problem 3. Consider a piecewise smooth function

\[ f(x) = \begin{cases} f_1(x), & x \leq 0, \\ f_2(x), & x > 0 \end{cases} \]

where \(f_1(x)\) is a \(C^\infty\) function on \((-\infty,0]\) and \(f_2(x)\) is a \(C^\infty\) function on \([0,\infty)\), but \(f_1(0) \neq f_2(0)\). Suppose \(p(x)\) is a \(k\)-th degree polynomial (\(k \geq 1\)) interpolating \(f(x)\) at \(k+1\) equally-spaced grid points \(x_j, j=0,1,2,\ldots,k\) with \(x_i < 0 < x_{i+1}\) for some \(i\) between \(0\) and \(k-1\). Prove that, when the grid size \(h = x_{j+1} - x_j\) is small enough, \(p'(x) \neq 0\) for \(x_i \leq x \leq x_{i+1}\), that is, \(p(x)\) is monotone in the interval \([x_i, x_{i+1}]\). (Hint: first prove the case when \(f_1(x) = c_1, f_2(x) = c_2\) and \(c_1 \neq c_2\) are two constants.)


2018 Individual

Problem (Hermite Polynomials). Define the Hermite polynomials as

\[ H_n(x) = (-1)^n \exp\left( \frac{x^2}{2} \right) \frac{d^n}{dx^n} \left[ \exp\left( -\frac{x^2}{2} \right) \right], \quad x \in (-\infty, +\infty), \quad n=0,1,2,\ldots \]
  • (a) Prove the weighted orthogonality of the Hermite polynomials:

    \[ \int_{-\infty}^{+\infty} \rho(x) H_n(x) H_m(x) dx = n! \sqrt{2\pi} \delta_{n,m}, \]

    where \(\rho(x) = \exp\left( -\frac{x^2}{2} \right)\).

  • (b) Prove the three-term recurrence formula:

    \[ H_{n+1}(x) = x H_n(x) - n H_{n-1}(x), \quad n \geq 1, \]

    and then show that for all \(n \geq 1\), \(H_n(x)\) and \(H_{n-1}(x)\) share no common roots.

  • (c) Use the recurrence formula and induction to prove the differential relation:

    \[ \frac{d}{dx} H_n(x) = n H_{n-1}(x), \quad n \geq 1, \]

    and then prove that \(H_n\) is an eigenfunction of the following eigenvalue problem

    \[ x u'(x) - u''(x) = \lambda u. \]

    You need to find the eigenvalue \(\lambda_n\) corresponding to \(H_n(x)\).


2019 Team

Let \(x=(x_0,\cdots,x_{N-1})\in \mathbb{R}^N\),\(x\neq 0\) and \(\hat{x}\) be its discrete Fourier transform, i.e.,

\[ \hat{x}_\omega = \frac{1}{\sqrt{N}}\sum_{t=0}^{N-1} x_t \exp (- 2\pi i \omega t/N),\omega=0,1,\cdots,N-1. \]

Prove that \(\|x\|_0\|\hat{x}\|_0 \geq N\), where \(\|x\|_0\) is the number of nonzero entries of \(x\).(Hint: show that \(\hat{x}\) can not have \(\|x\|_0\) conescutive zeros.)


.

Problem 1. Let \(f\in C^{k+1}[-1,1]\) and \([-1,1]\) be partitioned into subintervals \(I_j=[(j-1)h,jh]\) of width \(h\). Assume \(p\) is a polynomial of degree \(k\) which approximates \(f\) in \(I_j\) with

\[ \max_{x\in I_j} |f(x)-p(x)| \leq C_0 h^{k+1}. \]

where \(C_0\) is a constant indepentent of \(j\). Show that there exists an another constant \(C\), independent of \(j\), such that

\[ \max_{x\in I_{j\pm 1}}|p_j(x)-f(x)|\le C h^{k+1}. \]

(as long as \(I_{j\pm 1}\) \subset [-1,1], of course).


.

Problem 1. \((a)\) Show that

\[ T_n(x) = \cos (n \arccos x), \quad x \in [-1,1] \]

is a polynomial of degree \(n\) with extrema at

\[ x_k = \cos \left( \frac{k\pi}{n} \right), \quad k=0,1,\ldots,n, \]

and leading coefficient \(2^{n-1}\).

\((b)\) Show that if \(f\in C^{n+1}[-1,1]\) and if \(P(x)\) is the polynomial with degree at most \(n\) that interpolates \(f\) at \(x_k,k=0,1,\ldots,n\), then

\[ \|f(x)-P(x)\|_\infty \leq \frac{1}{2^n (n+1)!} \|f^{(n+1)}\|_\infty. \]

2012 Team

Problem 2. Let \(S(x)\) be a cubic spline with knots \(\{t_i\}_{i=0}^n\). If it is determined that \(S(x)\) is linear over \([t_1, t_2]\) and \([t_3, t_4]\), prove that \(S(x)\) is also linear over \([t_2, t_3]\).