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1 表示

1 表示

1.1 代数

我们回忆一些代数的基本知识。k[x1, · · · , xn]是关于x1, · · · , xn的多项式构成的代数，k 〈x1, · · · , xn〉
是自由代数，k[G]是由基 {ag, g ∈ G}生成的群代数。一个代数称为交换的若 ab = ba对任意 a, b ∈ A。

定义 1.1
一个域 k上的结合代数 (associative algebra)是 k上的向量空间A，伴有双线性映射A×A→
A, (a, b) 7→ ab，满足 (ab)c = a(bc)。一个单位 (unit)是 A中一个元素 1 ∈ A满足 1a = a1 = a

。

命题 1.1
若单位存在，则唯一。

我们仅考虑含单位元 1的结合代数。下面是一些代数的例子：

例 1.1

• A = k；

• A = k[x1, · · · , xn]：由 x1, · · · , xn构成的多项式；

• A = EndV；

• 自由代数 (free algebra) A = k 〈x1, · · · , xn〉：由字符 x1, · · · , xn组成的字符串。

• 群代数 (group algebra) A = k[G]：由
{
ag

∣∣∣g ∈ G}生成，运算由 agah = agh给出。

定义 1.2
一个代数 A是交换的 (commutative)若 ab = ba，对任意 a, b ∈ A成立。

定义 1.3
一个代数的同态 (homomorphism) f : A → B 是一个线性映射，满足 f(xy) = f(x)f(y)，对

任意 x, y ∈ A都成立，且 f(1) = 1。

1.2 表示

定义 1.4
一个结合代数 A的表示 (representation)或左 A−模 (left A−module)是一个向量空间 V，其

带有同态 ρ : A→ EndV。

类似的，一个右 A− 模 (right A−module) 为空间 V 伴有反同态 ρ : A → EndV，即 ρ 满足

ρ(ab) = ρ(b)ρ(a)且 ρ(1) = 1。我们举一些表示的例子

1



1.2 表示 1 表示

例 1.2

• V = 0；

• V = A, ρ : a 7→ (b 7→ ab)为自然的左乘，这个表示称为 A的正则表示 (regular repre-
sentation)。

• A = k，A的一个自然的表示为 k上的线性空间。

• A = k 〈x1, · · · , xn〉，令 V = k，任取线性算子 ρ(x1), · · · , ρ(xn) : V → V，这是一个表

示，留给读者自行验证。

定义 1.5
一个表示 V 的子表示 (subrepresentation)是一个 V 的子空间W，其在任意 ρ(a)作用下不变，

其中 a ∈ A。

显然 0与 V 都是 V 的子表示。

显然若 V1, V2是两个 A的表示，则 V1 ⊕ V2也是 A的表示。

定义 1.6
一个 A的非零表示 V 称为不可约的 (irreducible)，若其子表示仅有 0与 V。

定义 1.7
设 V1, V2 是代数 A的表示，一个表示的同态 (homomorphism)(或交织算子 (intertwining op-
erator)) φ : V1 → V2 是线性算子，满足 φ(av) = aφ(v)，对任意 v ∈ V1, a ∈ A成立。一个同
态 φ称为表示间的同构 (isomorphism)，若 φ是向量空间上的同构。

所有 V1, V2间的同态记作 HomA(V1, V2)。

定义 1.8
设 V1, V2是代数 A的表示，则由 a(v1 ⊕ v2) = (av1 ⊕ av2)给出的空间 V1 ⊕ V2显然也是 A的

表示。称为 V1, V2的直和 (direct sum)。

定义 1.9
一个 A的非零表示 V 称为不可分解的 (indecomposable)，若其不同构于两个非零表示的直
和。

不可约表示显然是不可分解的，但是反过来不一定成立。

表示论的基本问题主要为以下三者：

• 对给定的代数 A计算不可约表示。

• 对给定的代数 A计算不可分解表示。

• 把前两个问题限制在有限维表示上。

2



1.2 表示 1 表示

命题 1.2 (Schur’s lemma)

在域 F 上 (即不要求代数闭)，设 V1, V2 是代数 A的表示，令 φ : V1 → V2 是非零的表示间的

同态，则

• 若 V1不可约，则 φ是单射。

• 若 V2不可约，则 φ是满射。

即若 V1, V2都是不可约的，则 φ是同构。

证明. 这是容易的，证明留给读者。

推论 1.1
在代数闭域 k上，V 是代数 A的有限维不可约表示，同态 φ : V → V。则 φ = λ · Id，其中
λ ∈ k作为标量。

证明. 设 λ是 φ的特征根，存在性由 k 是代数闭域保证。则 φ − λId是同态且不是同构。由
Schur引理知其为零同态。

推论 1.2
设 A是交换代数，则任意 A的有限维不可约表示 V 都是一维的。

证明. 设 V 是不可约表示，则我们有

ρ(a)ρ(b)v = ρ(ab)v = ρ(ba)v = ρ(b)ρ(a)v

于是由 Schur引理，ρ(a)是标量，进而任意 V 的子空间都是子表示，结合 V 不可约即证。

例 1.3

• A = k，由于 A的表示为向量空间，故 V = A是唯一的不可约表示且是唯一的不可分

解表示。

• A = k[x]，

• A = k[G]，

Problem 1.1
设 V 是代数 A的非零有限维表示，则 V 有一个不可约子表示。

对无限维的情形构造反例。

3



1.3 理想 1 表示

Problem 1.2
设 A是域 k上的代数。A的中心 Z(A)为所有 z ∈ A满足 za = az, ∀a ∈ A的元素构成的集
合。例如若 A交换，Z(A) = A。

• 证明若 V 为A的不可约有限维表示，则任意 z ∈ Z(A)在 V 上的作用为某个标量 χV (z)。

证明 χV : Z(A)→ k是同态，称作 V 的中心特征 (central character)。

• 证明若 V 为A的不可分解有限维表示，则对任意 z ∈ Z(A)，ρ(z)仅有一个特征值 χV (z)，

与 z 在某个不可约有限维表示 V 上作用的标量一致。因此 χv : Z(A) → k 是同态，一

样称作 V 的中心特征。

• 前一问中 ρ(z)的作用一定是个标量吗？

1.3 理想

定义 1.10
代数 A的左理想 (left ideal)是子空间 I ⊆ A满足 aI ⊆ I，对任意 a ∈ A成立。类似的，右理
想 (right ideal)是子空间 I ⊆ A满足 Ia ⊆ I，对任意 a ∈ A成立。双边理想 (two-sided ideal)
是子空间既是左理想又是右理想。

例 1.4

• 对任意代数 A，0和 A是双边理想。代数 A称为单的 (simple)若其双边理想仅有 0与

A。

• 若 φ : A→ B 是代数间的同态，则 kerφ是 A的双边理想。

• 若 S 是任意 A的子集，由 S 生成 (generated)的双边理想记作 〈S〉，其由 asb构成，其

中 a, b ∈ A, s ∈ S。类似的构造 〈S〉l = span {as}与 〈S〉r = span {sb}，分别称作由 S 生

成的左理想、右理想。

Problem 1.3
证明任意含单位的环有极大左理想、右理想、双边理想。

1.4 商

设 I 是代数 A的双边理想。则 A/I 是 I 的陪集。令 π : A → A/I 是商映射。我们可以定义乘

法：π(a) · π(b) = π(ab)。这是良定义的，留给读者验证。

同样的，对 A的表示 V 与 V 的子表示W，则 V /W 也是表示。具体地说，设 π : V → V /W

是商映射，令 ρV /W (a)π(x) = π(ρ(a)x)。

Problem 1.4
设 A = k[x1, · · · , xn]与其理想 I 6= A包含了所有次数 ≥ N 的齐次多项式。证明 A/I 为 A的

一个不可分解表示。

4



1.5 由生成元与关系定义的代数 1 表示

Problem 1.5
设 V 6= 0是 A的表示。我们称 v ∈ V 是循环的 (cyclic)若其生成了 V，即 Av = V。一个含

有循环向量的表示称为循环的 (cyclic)。

• V 是不可约的当且仅当 V 中任意向量 v是循环的。

• V 是循环的当且仅当其同构于 A/I，其中 I 是 A的左理想。

• 举一个不可分解但不循环的例子。

1.5 由生成元与关系定义的代数

令 f1, · · · , fm是自由代数 k 〈x1, · · · , xn〉的元素，我们称代数A = k 〈x1, · · · , xn〉 / 〈{f1, · · · , fm}〉
是由 x1, · · · , xn在关系 f1 = 0, · · · , fm = 0下生成的。

1.6 一些代数的例子

本节中我们来看看有意思的Weyl代数。

• Weyl代数 k 〈x, y〉 / 〈yx− xy − 1〉

• q−Weyl代数，由 x, x−1, y, y−1生成，关系 yx = qxy与 xx−1 = x−1x = yy−1 = y−1y = 1。

命题 1.3

• Weyl代数 A的基为
{
xiyj

∣∣∣i, j ≥ 0
}
。

• q−Weyl代数 Aq 的基为
{
xiyj

∣∣∣i, j ∈ Z
}

证明. (1)：首先注意到利用 yx = xy + 1我们可以将任意 x, y 的字符串中的所有 x转移到左

侧，y转移到右侧，这表明
{
xiyj

∣∣∣i, j ≥ 0
}
生成了 A。

下面我们用表示论来证明 xiyj 线性独立。设 a是一个变量，令 E = tak[a][t, t−1]，给定

作用 xf = tf 与 yf = df
dt 我们有 E 是 A的表示。设

∑
cijx

iyj = 0，则其对应的作用

L =
∑

cijt
i

(
d
dt

)j
在 E 上为 0。记

L =
r∑
j=0

Qj(t)

(
d
dt

)j
其中 Qr 6= 0，则我们有

Lta =
r∑
j=0

Qj(t)a(a− 1) · · · (a− j + 1)ta−j

这是零作用，于是
∑r

j=0Qj(t)a(a − 1) · · · (a − j + 1)t−j = 0 ∈ k[a][t, t−1]。考虑 a最高次项，

得到 Qr(t) = 0，矛盾！
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1.7 箭图 1 表示

(2)：任意 Aq 中的字符串，可以通过乘以 q的幂次来将其排序。

注：(1)的证明告诉我们Weyl代数 A可视作对关于 t的多项式上的求导算子。同样 (1)的证明给出

了如下忠实表示的定义。

定义 1.11
代数 A的表示 ρ是忠实的 (faithful)，若 ρ是单射。

例如，当 chark = 0时，k[t]就是Weyl代数 A的忠实表示。当 chark = p 6= 0时，(d/dt)pQ =

0, ∀Q ∈ k[t]。然而无论何种情况 E = tak[a][t, t−1]总是忠实的。

1.7 箭图

定义 1.12
一个箭图 (quiver) Q是一个有向图，允许带有自环、重边。

例 1.5
• • •

•

我们记 Q的顶点为 I，边为 E。对边 h ∈ E，记 h′, h′′为 h的起点与终点，如图：

•h′ •h′′
h

定义 1.13
一个箭图 Q 的表示是对每个顶点 i ∈ I 指定向量空间 Vi 并对每条边 h ∈ E 指定线性映射

xh : Vh′ → Vh′′。

定义 1.14
Q的路代数 (path algebra) PQ是一个基为所有 Q的路 (包含平凡路 pi, i ∈ I)的向量空间，其
乘法由道路的连接给出：ab为先沿着 b后沿着 a得到的道路；如果两者不能连接则其值为 0。

注：容易得到对有限箭图
∑

i∈I pi = 1，故 PQ是一个含幺代数。

Problem 1.6
证明 PQ由 pi, i ∈ I 与 ah, h ∈ E 和如下关系生成：

• p2i = pi, pipj = 0, ∀i 6= j；

• ahph′ = ah, ahpj = 0, ∀j 6= h′；

• ph′′ah = ah, piah = 0, ∀i 6= h′′。
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1.8 李代数 1 表示

定义 1.15
箭图 Q的表示 (Vi, xh)的子表示为表示 (Wi, x

′
h)满足 Wi ⊆ Vi, ∀i ∈ I ，xh(Wh′) ⊆ Wh′′ 且

x′h = xh
∣∣
W ′

h

:Wh′ →Wh′′ , ∀h ∈ E。

定义 1.16
两个表示 (Vi, xh)，(Wi, yh)的直和为表示 (Vi ⊕Wi, xh ⊕ yi)。

定义 1.17
设 (Vi, xh)，(Wi, yh) 为箭图 Q 的表示，箭图表示间的同态 ϕ : (Vi) → (Wi) 为一系列映射

ϕi : Vi →Wi满足 yh ◦ ϕh′ = ϕh′′ ◦ xh, ∀h ∈ E 构成的集合。

1.8 李代数

设 g是域 k上的线性空间，[ , ] : g× g→ g是反对称双线性映射，即 [a, b] = −[b, a]。

定义 1.18
(g, [ , ])是李代数 (Lie algebra)若 [ , ]满足 Jacobi恒等式：

[
[a, b] , c

]
+
[
[b, c] , a

]
+
[
[c, a] , b

]
= 0

例 1.6
下面是一些李代数的例子：

• 任意 g取 [ , ] = 0。

• 任意交换代数 A与 [a, b] = ab− ba，特别的，对自同态代数 A = EndV，其中 V 是向量

空间。这时 A可被看作李代数，通常记作 gl(V )(general linear Lie algebra)。

• 任意交换代数 A的子空间 U 满足 [ , ] ∈ U，对任意 a, b ∈ U。

• 代数 A的导子 (derivations) DerA，即线性映射 D : A→ A满足 Leibniz法则：

D(ab) = D(a)b+ aD(b)

• 任意李代数 g的子空间 a满足在 [ , ]运算下闭。这样的子空间称作 g的李子代数 (Lie
subalgebra)。

注：Ado’s theorem告诉我们任意有限维的李代数是 gl(V )的李子空间，其中 V 是某个有限维

线性空间。
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1.8 李代数 1 表示

例 1.7
下面是一些李代数的例子：

• R3与 [u, v] = u× v，u, v的叉乘。

• sl(n)，n× n且迹为 0的矩阵。比如 sl(2)有基：

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

与关系：

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

• Heisenberg李代数H是形如


0 ∗ ∗
0 0 ∗
0 0 0

的所有矩阵，有基：

x =


0 0 0

0 0 1

0 0 0

 , y


0 1 0

0 0 0

0 0 0

 , c =


0 0 1

0 0 0

0 0 0


与关系：

[y, x] = c, [y, c] = [x, c] = 0

• 代数 aff(1)是形如

(
∗ ∗
0 0

)
的所有矩阵，有基：

X =

(
1 0

0 0

)
, Y =

(
0 1

0 0

)

与关系

[X,Y ] = Y

• so(n)，所有反对称的 n× n矩阵，[a, b] = ab− ba。

定义 1.19
设 g1, g2为李代数，李代数间的同态 ϕ : g1 → g2是一个线性映射满足

ϕ([a, b]) = [ϕ(a), ϕ(b)]

定义 1.20
李代数 g的表示 (representation)是一个向量空间 V，其带有李代数间的同态 ρ : g→ EndV。
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1.9 张量积 1 表示

例 1.8
下面是一些李代数的表示的例子：

• V = 0。

• 任意向量空间 V 与 ρ = 0，称作平凡表示。

• 伴随表示 V = g与 ρ(a)(b) = [a, b]。

事实证明李代数 g的表示和一个确定的交换代数 U(g)的表示是同一回事 (留给读者证明)。于
是，通过箭图的手段，我们可以将李代数表示理论视作交换代数表示理论的一部分。

定义 1.21
设李代数 g的基是 {xi}，[xi, xj ] =

∑
k c

k
ijxk。泛包络代数 U(g)是由 xi与关系 xixj − xjxi =∑

k c
k
ijxk 生成的交换代数。

1.9 张量积

本节中我们回忆一些张量积相关的定义与记号。

定义 1.22
向量空间 V,W 在域 k上的张量积 (tensor product) V ⊗W 是

V ?W = span
{
v ⊗ w

∣∣∣v ∈ V,w ∈W}
商掉由如下元素生成的子空间的商空间：

(v1 + v2)⊗ w − v1 ⊗ w − v2 ⊗ w,

v ⊗ (w1 + w2)− v ⊗ w1 − v ⊗ w2,

av ⊗ w − a(v ⊗ w),

v ⊗ aw − a(v ⊗ w)

其中 v ∈ V,w ∈W,a ∈ k。

1.10 张量代数

定义 1.23
设 V 为向量空间，定义 V 在域 k上的张量代数 (tensor algebra) TV = ⊗n≥0V

⊗n，其上乘法

a · b = a⊗ b, a ∈ V ⊗n, b ∈ V ⊗m。

若 V 的基为 x1, · · · , xN 则 TV 同构于 k 〈x1, · · · , xN 〉。

定义 1.24

V 的对称代数 (symmetric algebra) SV 是 TV 商掉 span
{
v ⊗ w − w ⊗ v

∣∣∣v, w ∈ V }的商空间。
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1.11 Hilber第三问题 1 表示

定义 1.25
V 的外代数 (exterior algebra) ∧V 是 TV 商掉 span {v ⊗ v|v ∈ V }的商空间。

定义 1.26
设 V 是李代数，V 的泛包络代数 (universal enveloping algebra) U(V ) 是 TV 商掉

span
{
v ⊗ w − w ⊗ v − [v, w]

∣∣∣v, w ∈ V }的商空间。
容易看到基 x1, · · · , xN 的选取就确定了以上三者的结构。进一步，容易看到我们有分解：

SV =
⊕
n≥0

SnV,∧V =
⊕
n≥0

∧nV

1.11 Hilber第三问题
Problem 1.7
已知若 A和 B 是两个面积相同的多边形，则可以通过有限次直线切割将 A分割成若干多边

形碎片，并重新拼合成 B（建议尝试——很有趣！）。1900年，大卫·希尔伯特提出：对于三
维空间中的多面体，类似命题是否成立？具体而言，体积相同的立方体和正四面体是否可以

通过有限次平面切割相互转换？

答案是否定的。德恩 (Dehn)于 1901年证明了这一结论，其证明方法十分精妙。对于任意多面
体 A，我们定义其“Dehn不变量”（Dehn invariant）D(A)，取值于向量空间 V = R⊗Q (R/Q)

（即有理数域上的张量积），表达式为：

D(A) =
∑
a

l(a)⊗ β(a)

π
,

其中求和遍历多面体 A的所有棱 a，l(a)为棱长，β(a)为棱 a对应的二面角。

• 若通过平面切割将 A分割为两个多面体 B和 C，则 Dehn不变量满足D(A) = D(B) +

D(C)。

• 证明 α = 1
π

arccos
(
1
3

)
不是有理数。

提示：假设 α = 2m
n
（其中m,n为整数），推导方程 x+ x−1 = 2

3
的根为 n次单位根。进

一步证明 xk + x−k 的分母为 3k，由此得出矛盾。

• 结合 (1)和 (2)，说明希尔伯特问题的答案是否定的。（具体计算正四面体和立方体的德

恩不变量。）

1.12 李代数表示的张量积与对偶

定义 1.27
两个李代数 g的表示 V,W 的张量积 (tensor product)是空间 V ⊗W 与

ρV⊗W (x) = ρV (x)⊗ Id + Id⊗ ρW (x)
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1.13 sl(2)的表示 1 表示

定义 1.28
李代数 g 的表示 V 的对偶表示 (dual representation) V ∗ 是 V 的对偶空间 V ∗ 与 ρV ∗(x) =

−ρV (x)T

容易验证两者均为表示。

Problem 1.8
设 V,W,U 是李代数 g的表示，证明

Homg(V ⊗W,U) ∼= Homg(V, U ⊗W ∗)

这里 Homg := HomU(g)

1.13 sl(2)的表示

本节中我们将逐步计算 sl(2)的表示。

根据上述内容，sl(2)的一个表示即是一个向量空间 V 连同三个算子E,F,H，满足HE−EH =

2E、HF − FH = −2F 以及 EF − FE = H（对应的映射 ρ由 ρ(e) = E、ρ(f) = F、ρ(h) = H 给

出）。

设 V 为 sl(2)的有限维表示（本问题的基域为 C）。

Problem 1.9
(a)取H 的特征值，并选取其中实部最大的一个，记为 λ。令 V̄ (λ)为对应于 λ的广义特征空

间。证明 E|V (λ) = 0。

Problem 1.10
(b)设W 为 sl(2)的任一表示，w ∈W 为非零向量且满足 Ew = 0。对任意 k > 0，求一个次

数为 k的多项式 Pk(x)，使得 EkF kw = Pk(H)w。（先计算 EF kw，再对 k进行归纳。）

Problem 1.11
(c)设 v ∈ V̄ (λ)为 H 的广义特征向量，对应的特征值为 λ。证明存在 N > 0使得 FNv = 0。

Problem 1.12
(d)证明H在 V̄ (λ)上可对角化。（取满足 FN = 0作用于 V̄ (λ)的N，并利用 (b)计算ENFNv

（v ∈ V̄ (λ)）。注意 Pk(x)无重根。）

Problem 1.13
(e)设 Nr 为满足 (c)的最小 N。证明 λ = Nr − 1。
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1.13 sl(2)的表示 1 表示

Problem 1.14
(f)证明对每个N > 0，存在唯一（在同构意义下）的N 维不可约表示。选取适当的基，计算

该表示中E,F,H的矩阵。（对有限维不可约表示 V，取 (a)中的 λ及H的特征向量 v ∈ V (λ)。

证明 v, Fv, . . . , FNv构成 V 的基，并在此基下计算各算子的矩阵。）

将 (f)中所述的 (λ+1)维不可约表示记为 Vλ。以下问题将证明任意有限维表示均为 Vλ的直和。

Problem 1.15
(g)证明算子 C = EF + FE +H2/2（称为卡西米尔算子）与 E,F,H 交换，且在 Vλ上等于
λ(λ+2)

2
Id。

易证直和分解。假设相反情况，取 V 为最小维数的可约表示且不能分解为更小表示的直和。

Problem 1.16

(h)证明 C 在 V 上仅有一个特征值，即对某个非负整数 λ，该特征值为 λ(λ+2)
2
（利用 C 的广

义特征空间分解必为表示的分解）。

Problem 1.17
(i)证明 V 有子表示W = Vλ使得 V /W = nVλ（利用 (h)及 V 为最小不可分解可约表示）。

Problem 1.18
(j)由 (i)推导H的特征空间 V (λ)为n+1维。若其基为 〈v1, . . . , vn+1〉，证明F jvi（1 ≤ i ≤ n+1，

0 ≤ j ≤ λ）线性无关，从而构成 V 的基。（验证若 Fx = 0 且 Hx = µx（x 6= 0），则

Cx = µ(µ−2)
2

x，故 µ = −λ。）

Problem 1.19
(k)定义Wi = span{vi, Fvi, . . . , F λvi}。证明Wi为 V 的子表示，并由此导出矛盾。

Problem 1.20
(l)（Jacobson-Morozov引理）设 V 为有限维复向量空间，A : V → V 为幂零算子。证明存在

唯一的（在同构意义下）sl(2)表示，使得 E = A。（利用表示分类及若尔当标准形定理。）

Problem 1.21
(m)（Clebsch-Gordan分解）将表示 Vλ ⊗ Vλ′ 分解为不可约分量。

提示：对 sl(2)的有限维表示 V，可引入特征 χV (x) = TrV (xH)（x ∈ C）。证明 χV⊕W (x) =

χV (x)+χW (x)且 χV⊗W (x) = χV (x)χW (x)。计算 Vλ及 Vλ⊗Vλ′ 的特征，进而导出分解。此

分解在量子力学中至关重要。

Problem 1.22
(n)设 V = CM ⊗ CN，且 A = J0,M ⊗ IdN + IdM ⊗J0,N，其中 J0,n为特征值零的 n阶若尔当

块（即 J0,nei = ei−1（i = 2, . . . , n），J0,ne1 = 0）。利用 (l)和 (m)求 A的若尔当标准形。
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1.14 有关李代数的一些问题 1 表示

1.14 有关李代数的一些问题

Problem 1.23 (Lie定理)

李代数 g的换位子K(g)是由元素 [x, y]（x, y ∈ g）张成的线性空间。这是 g的一个理想（即

其为伴随表示的子表示）。称域 k上的有限维李代数 g为可解的，若存在 n使得 Kn(g) = 0。

证明李定理：若 k = C且 V 是可解李代数 g的有限维不可约表示，则 V 是 1维的。
提示：通过对维数归纳证明。由归纳假设，K(g)在 V 中存在公共特征向量 v，即存在线性

函数 χ : K(g) → C使得对任意 a ∈ K(g)有 av = χ(a)v。证明 g保持 K(g)的公共特征空

间。（为此需证对 x ∈ g和 a ∈ K(g)有 χ([x, a]) = 0。考虑包含 v且在 x作用下不变的最小子

空间 U。该子空间在 K(g)作用下不变，且任意 a ∈ K(g)在此子空间上的迹为 dim(U)χ(a)。

特别地，0 = Tr([x, a]) = dim(U)χ([x, a])。）

Problem 1.24
分类具有基 X,Y 且满足交换关系 [X,Y ] = Y 的二维李代数的有限维不可约表示。考虑特征

为零和正特征的情况。李定理在正特征时是否成立？

Problem 1.25 (困难！)

对李代数 g的任意元素 x，令 ad(x)表示算子 g → g，y 7→ [x, y]。考虑由两元素 x, y 生成的

李代数 gn，其定义关系为 ad(x)2(y) = ad(y)n+1(x) = 0。

(a)证明李代数 g1, g2, g3是有限维的，并求其维数。

(b)（更困难！）证明李代数 g4是无限维的。显式构造该代数的一组基。

Problem 1.26
分类特征 p > 2的代数闭域 k上李代数 sl(2)的不可约表示。

Problem 1.27
设 k为特征零的代数闭域，q ∈ k×且 q 6= ±1。量子包络代数 Uq(sl(2))是由生成元 e, f,K,K−1

构成的代数，满足关系：

KeK−1 = q2e, KfK−1 = q−2f, [e, f ] =
K −K−1

q − q−1

（若形式地令 K = qh，可看出此代数在某种意义下“退化”为 U(sl(2)) 当 q → 1）。分类

Uq(sl(2))的不可约表示。分别考虑 q为根的单位根和 q非根的单位根的情况。
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2 表示理论的一般结论

2 表示理论的一般结论

2.1 半单表示的子表示

设 A是代数。

定义 2.1
一个 A 的半单 (semisimple) 或完全可约 (completely reducible) 表示为一些不可约表示的直
和。

例 2.1
设 V 是A的不可约表示，且维数为 n。令 Y = EndV，考虑同构 Y → nV, x 7→ (xv1, · · · , xvn)，
其中 v1, · · · , vn为 V 的基，这表明 Y 是 A的半单表示。

注意到，由 Schur引理，任意 A的半单表示 V 可以写成
⊕

X HomA(X,V )⊗X，其中X 取遍所

有 A的不可约表示。具体地说，我们有自然映射 f :
⊕

X HomA(X,V )⊗X → V, g ⊗ x 7→ g(x)，其

中 x ∈ X, g ∈ Hom(X,V )，容易验证这是同构。

命题 2.1
令 Vi, 1 ≤ i ≤ m是 A的两两不同构的有限维不可约表示，设 V =

⊕m
i=1 niVi 的一个子表示

为W，则W 同构于
⊕m

i=1 riVi, ri ≤ ni，且嵌入映射 φ : W → V 可分解为一系列嵌入映射

φi : riVi → niVi的直和，每个 φi通过 ri × ni矩阵Xi定义。具体地说，对 Vi中长度为 ri的

行向量 (v1, · · · , vri)，有
φ(v1, · · · , vri) = (v1, · · · , vri)Xi

证明. 对 n :=
∑m

i=1 ni归纳。n = 1显然成立。假设W 非零，并固定一个不可约子表示P ⊂W。
这样的 P 存在 (Problem 1.1)。根据 Schur引理，P 同构于某个 Vi，且包含映射 φ|P : P → V

通过 niVi 分解，并在将 P 与 Vi 等同后由公式 v 7→ (vq1, . . . , vqni
)给出，其中 ql ∈ k 不全为

零。

注意到群Gi = GLni
(k)(k上可逆的 ni×ni矩阵群)作用在 niVi上，定义为 (v1, . . . , vni

)→
(v1, . . . , vni

)gi(并对 njVj(j 6= i)恒等作用)。此作用保持所需性质：在 gi作用下，矩阵Xi变为

Xigi，而Xj(j 6= i)不变。取 gi ∈ Gi使得 (q1, . . . , qni
)gi = (1, 0, . . . , 0)，则Wgi包含 niVi的第

一个直和项 Vi(即 Pgi)。因此，Wgi = Vi⊕W ′，其中W ′ ⊂ n1V1⊕· · ·⊕ (ni−1)Vi⊕· · ·⊕nmVm
是Wgi沿其他直和项向第一个直和项 Vi投影的核。于是所需结论由归纳假设可得。

2.2 稠密定理

设 A是代数闭域 k上的代数。

推论 2.1
令 V 是 A 的有限维不可约表示，取 V 的任意一组线性无关向量 v1, · · · , vn，则对任意
w1, · · · , wn ∈ V，存在 a ∈ A使得 avi = wi。
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2.3 矩阵代数直和的表示 2 表示理论的一般结论

证明. 反证法，若不然，映射A→ nV, a 7→ (av1, · · · , avn)的像是真子表示，故由命题 2.1其对
应一个 r× n矩阵X，其中 r < n。于是取 a = 1则存在 u1, · · · , ur ∈ V 使得 (u1, · · · , ur)X =

(v1, · · · , vn)。令 (q1, · · · , qn)为非零向量满足 X(q1, · · · , qn)T = 0(存在性由 r < n给出)，则∑
qivi = (u1, · · · , ur)X(q1, · · · , qn)T = 0，即

∑
qivi = 0，这与 vi线性无关矛盾！

定理 2.1 (The density theorem)

• 设 V 是 A的有限维不可约表示，则 ρ : A→ EndV 是满射。

• 设 V = V1⊕ · · · ⊕Vr其中 Vi是 A的两两不同构的有限维不可约表示。则映射
⊕r

i=1 ρi :

A→
⊕r

i=1 End(Vi)是满射。

证明. (1)：设 c ∈ End(V )，v1, · · · , vn 为 V 的基，令 wi = cvi，由 推论 2.1 ，存在 a ∈ A，

avi = wi，故 ρ(a) = c，故 c ∈ Imρ，于是 Imρ = End(V )。

(2)：由于
⊕r

i=1 End(Vi) ∼=
⊕r

i=1 diVi，由命题 2.1知 Imρ =
⊕r

i=1 Imρi，结合 (1)即证。

2.3 矩阵代数直和的表示

本节中我们考虑在域 k上的代数 A =
⊕

i Matdi(k)的表示。

定理 2.2
设 A =

⊕r
i=1 Matdi(k)，则其不可约表示为 V1 = kd1 , · · · , Vr = kdr，且任意有限维表示为

V1, · · · , Vr 构成的直和。

定义 2.2
设 V 是代数A的表示，则 V 的对偶表示 (dual representation) V ∗为反代数Aop (或右A−模)
伴有作用

(f · a)(v) = f(av)

证明. 首先 Vi是不可约的。

令 X 是 A的 n维表示，则 X∗是 Aop的 n维表示，由 (BC)T = CTBT 与下图给出：

Aop A

BT B

∼=

∈ ∈

取 {y1, · · · , yn}为 X∗的基，定义

φ : A⊕n → X∗

(a1, · · · , an) 7→
n∑
i=1

aiyi

由 k ⊂ A知 ψ是满射，故 φ∗ : X → (A⊕n)∗是单射。考虑
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2.4 滤链 2 表示理论的一般结论

(Matd(k))∗ Matd(k)

tr(BT−) Bφ

∼=

∈ ∈

同构只需验证 ϕ(C ·B)(D) = (C · ϕ(B))(D)

这等价于 tr(BTCTD) = ϕ(B)(CTD) = tr(BTCTD) 成立。故 X ∼= Imφ∗ ⊂ A⊕n =⊕r
i=1 ndiVi，由命题 2.1知 X ∼=

⊕r
i=1miVi, 0 ≤ mi ≤ ndi。

2.4 滤链

设 A是代数，V 是 A的表示。

定义 2.3
V 的 (有限)滤链 (filtration)是一列子表示 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V。

引理 2.1
任意代数 A的有限维表示 V 有一个有限滤链 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V 满足 Vi/Vi−1不可

约。

2.5 有限维代数

定义 2.4
有限维代数 A的根 (radical)为所有在 A的不可约表示上作用为 0的元素构成的集合。记作

Rad(A)。

命题 2.2
Rad(A)是双边理想。

证明. Easy.

命题 2.3
设 A是有限维代数。

• 设 I 是双边幂零理想。即存在 n，In = 0。则 I ⊂ Rad(A)。

• Rad(A)是幂零理想。于是 Rad(A)是 A中最大的双边幂零理想。

证明. (1)：设 V 是不可约表示。对 v ∈ V，Iv ⊂ V 是子表示。若 Iv 6= 0，则 Iv = V，故存在

x ∈ I 满足 xv = v，于是 xn 6= 0矛盾。因此 Iv = 0，即 I 在 V 上作用为 0，故 I ⊂ Rad(A)。
(2)：设 0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A是一个正规表示的滤链满足 Ai+1/Ai 是不可约的

(存在性由引理 2.1)给出。设 x ∈ Rad(A)，则 x在 Ai+1/Ai上作用为 0，故 x将 Ai+1打到 Ai，

这就表明 Rad(A)n = 0，证毕！
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2.5 有限维代数 2 表示理论的一般结论

定理 2.3
有限维代数 A在同构意义下仅有有限个不可约表示 Vi。这些表示是有限维的，且

A/Rad(A) ∼=
⊕
i

EndVi

证明. 首先，对任意不可约表示 V，任取 0 6= v ∈ V，Av ⊂ V 且 Av 6= 0，由 V 不可约知

V = Av，故 V 有限维。

其次，设我们有互不同构的不可约表示 V1, · · · , Vr，由定理 2.1同态⊕
i

ρi : A→
⊕
i

EndVi

是满射。故 r ≤
∑

i dim EndVi ≤ dimA，因此 A仅有有限个互不同构的不可约表示。

最后，设 V1, · · · , Vr 为所有互不同构的不可约表示，由定理 2.1同态⊕
i

ρi : A→
⊕

EndVi

是满射。这个映射的核显然为 Rad(A)，证毕！

推论 2.2∑
i(dimVi)

2 ≤ dimA，其中 Vi是所有不可约表示。

证明. 由定理 2.2，

dimA ≥ dimA− dim Rad(A) =
∑
i

dim EndVi = (dimVi)
2

例 2.2

• 设 A = k[x]/(xn)。这个代数有唯一的不可约表示，那就是一维表示 k，在这上面 x作

用为 0。故 Rad(A)为理想 (x)。

• 设 A为所有 n × n的上三角矩阵。容易验证所有的不可约表示为 Vi, i = 1, · · · , n为一
维表示，且在 Vi 上 x的作用为乘上标量 xii。故 Rad(A)为所有严格上三角矩阵。下三
角矩阵的结论类似。

定义 2.5
一个有限维代数 A称为半单的 (semisimple)若 Rad(A) = 0。
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2.6 表示的特征 2 表示理论的一般结论

命题 2.4
对有限维代数 A，如下命题等价：

• A是半单的。

•
∑

i(dimVi)
2 = dimA，其中 Vi是 A的所有不可约表示。

• 存在 di使 A ∼=
⊕

i Matdi(k)。

• A的任意有限维表示是完全可约的 (即同构于不可约表示的直和)。

• A是 A的完全可约表示。

证明. (1)⇐⇒ (2)：由 dimA− dim Rad(A) =
∑

i(dimVi)
2即得。

(1) =⇒ (3)：由定理 2.3，若 Rad(A) = 0显然 A ∼=
⊕

i Matdi(k)，其中 di = dimVi。

(3) =⇒ (1)：由定理 2.2，Rad(A) = 0，故半单。

(3) =⇒ (4)：由定理 2.2即得。
(4) =⇒ (5)：显然。

(5) =⇒ (3)：设A =
⊕

i niVi，考虑 EndA(A)。由于 Vi两两不同构，故由 Schur引理，没有
映射能把 Vi打到 Vj。再由 Schur引理 EndA(Vi) = k，于是 EndA(A) ∼=

⊕
i Matni

(k)。但由问题

1.X知 EndA(A) ∼= Aop，故Aop ∼=
⊕

i Matni
(k)，因此A ∼= (

⊕
i Matni

(k))op =
⊕

i Matni
(k)。

2.6 表示的特征

设 V 是代数 A的有限维表示伴有同态 ρ。则 V 的特征 (character)为线性映射 χV : A→ k，

χV (a) = Tr
∣∣
V
(ρ(a))

设 [A,A] := span
{
[x, y] := xy − yx

∣∣∣x, y ∈ A}，则 [A,A] ⊆ kerχV。因此我们可以将特征看作
χV : A/[A,A]→ k。

Problem 2.1
证明若W ⊂ V 均为有限维表示，则 χV = χW + χV /W。

定理 2.4

• A的有限维不可约表示的特征线性无关。

• 若 A是有限维半单代数，则这些特征为 (A/[A,A])∗的基。

证明. (1)：设 V1, · · · , Vr 是互不同构的 A的有限维不可约表示，则由稠密定理知映射

ρV1
⊕ · · · ⊕ ρVr

: A→ EndV1 ⊕ · · · ⊕ EndVr

是满射。若
∑
λiχVi

(a) = 0, ∀a ∈ A，则
∑
λiTr(Mi) = 0, ∀Mi ∈ EndkVi，但这些 Tr(Mi)可取

成线性独立，于是 λ1 = · · · = λn = 0。
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2.7 Jordan-Hölder定理 2 表示理论的一般结论

(2)：由线代知识我们有 [Matd(k),Matd(k)] = sld(k)为所有迹为 0的矩阵。由半单性，我

们将 A写成Matd1(k)⊕ · · · ⊕Matdr(k)，则 [A,A] = sld1(k)⊕ · · · ⊕ sldr(k)，且 A/[A,A] ∼= kr。

由定理 2.2知 A的全体不可约表示为 kd1 , · · · , kdr，对应的 r个特征在 r维空间 A/[A,A]上线

性独立，故为其基。

2.7 Jordan-Hölder定理

定理 2.5 (Jordan-Hölder theorem)

设 V 是 A的有限维表示，令 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V 与 0 ⊂ V ′
0 ⊂ · · · ⊂ V ′

m = V 为 V 的

两个滤链，满足Wi = Vi/Vi−1 与W ′
i = V ′

i /V
′
i+1 为不可约表示。则 n = m，且存在 1, · · · , n

的置换 σ满足Wσ(i)
∼=W ′

i。

证明. 首先证明 chark = 0的情形。V 的特征显然等于Wi 的特征的和，同样也为W ′
i 的特征

的和。但由定理 2.4知这些特征是线性无关的，于是每个不可约表示W 在Wi 与W ′
i 的重数

相同，得证。

然后我们来看一般情形。我们对维数 dimV 归纳。n = 1时显然。

Jordan-Hölder定理表明在模 V的一个具有不可约逐次商因子的滤链中，其项数 n不依赖于滤

链的选取，而仅由 V 本身决定，这称作 V 的长度 (length)。容易看到这也是滤链长度的最大值。
这些不可约表示W1, · · · ,Wn按照其在某个滤链中作为逐次商因子出现的顺序排列而成的序列，

称为 V 的一个 Jordan-Hölder合成列。

2.8 Krull-Schmidt定理

定理 2.6 (Krull-Schmidt theorem)

代数 A的任意有限维表示可以同构意义下唯一地分解为不可分解表示的直和。

证明. 存在性显然。下证唯一性。
若 V = V1⊕· · ·⊕Vm = V ′

1⊕· · ·⊕V ′
n，令 is : Vs → V, i′s : V

′
s → V, ps : V → Vs, p

′
s : V → V ′

s

为自然嵌入与投影。令 θs = p1i
′
sp

′
si1 : V1 → V1，我们有

∑n
s=1 θs = 1。

先证明一个引理：

引理 2.2
设W 是 A的有限维不可分解表示，则：

• 任意同态 θ :W →W 为同构或者幂零。

• 若 θs :W →W, s = 1, · · · , n为幂零同态，则 θ = θ1 + · · ·+ θn也幂零。

19



2.8 Krull-Schmidt定理 2 表示理论的一般结论

Lemma’s proof. (1)：注意到 θ 的特征向量空间的直和就是W，于是 θ 仅有一个特征值

λ。若 λ = 0则 θ幂零，否则 θ为同构。

(2)：对 n归纳。n = 1时显然。考虑 n−1时成立，假设 θ不是幂零的。由 (1)知 θ为

同构，故
∑
θ−1θi = 1。θ−1θi不是同构，故幂零，于是 1−θ−1θn = θ−1θ1+ · · ·+θ−1θn−1

是同构，这与归纳假设矛盾。

由引理，存在 s，θs为同构，不妨 s = 1。于是 V ′
1 = Im(p′1i1)⊕Ker(p1i′1)，由于 V ′

1 为不

可分解的，我们有 f := p′1i1 : V1 → V ′
1 与 g := p1i

′
1 : V

′
1 → V1为同构。

令 B =
⊕

j>1 Vj , B
′ =

⊕
j>1 V

′
j，则我们有 V = V1 ⊕B, V ′ = V ′

1 ⊕B′。考虑 h : B → B′

为 B → V → B′ 自然映射的复合，我们来证 h为同构。只需证 kerh = 0。设 v ∈ kerh ⊂ B，

则 v ∈ V ′
1。另一方面，v到 V1的投影映射为 0，故 gv = 0。由于 g是同态，得 v = 0。

由归纳得m = n且 Vj ∼= V ′
σ(j)对某个 2, · · · , n的置换 σ，证毕。

Problem 2.2
引理 2.2中用到了 k是代数闭域，证明没有这个条件的情形。
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2.9 Problems 2 表示理论的一般结论

2.9 Problems
Problem 2.3 (表示的扩张)

设 V,W 是 A的表示。我们希望确定 A的表示 U 满足 V 是 U 的子表示且 U/V = W。我们

当然知道 V ⊕W 是满足的，但是有没有其他的 U 呢？

设 U 是满足条件的表示，作为向量空间，U = V ⊕W，故对任意 a ∈ A，对应的作用 ρ(a)满

足：

ρU (a) =

(
ρV (a) f (a)

0 ρW (a)

)

其中 f : A→ Homk(W,V )为线性映射。

• f(a)需要满足什么条件才能让 ρU (a)为表示？这样的 f 称作 1-cocycle，构成的向量空
间记作 Z ′(W,V )。

• 令 X :W → V 为线性映射，X 的上边缘 (coboundary) dX 定义为

dX : A→ Homk(W,V )

a 7→ ρV (a)X −XρW (a)

证明 dX 是 cocycle，为零映射当且仅当X 为表示间的同态。于是上边缘为一个子空间

B1(W.V ) ⊂ Z1(W,V )，同构于 Homk(W,V )/HomA(W,V )。Z1(W,V )/B1(W,V )记作

Ext1(W,V )。

• 证明若 f, f ′ ∈ Z1(W,V )且 f − f ′ ∈ B1(W,V )，则其对应的表示 U,U ′同构。反过来若

φ : U → U ′为同构满足

φ(a) =

(
1V ∗
0 1W

)

则 f − f ′ ∈ B1(V,W )。于是 Ext1(W,V )确定了W 对 V 的扩张。

• 设W,V 是A的有限维不可约表示，对任意 f ∈ Ext1(W,V )，令 Uf 为对应的扩张。证明

Uf 作为表示同构于 Uf ′ 当且仅当 f, f ′ 成比例。于是W 对 V 的扩张对于同构的等价类

同构于射影空间 PExt1(W,V )。特别的，所有扩张都是平凡的当且仅当 Ext1(W,V ) = 0。

Problem 2.4

• 设 A = C[x1, . . . , xn]，且 Va, Vb 为一维表示，其中元素 xi 分别通过复数 ai 和 bi 作用。

求 Ext1(Va, Vb)，并对 A的二维表示进行分类。

• 设 B是由 x1, . . . , xn生成的复代数，满足关系 xixj = 0（对任意 i, j）。证明当 n > 1时，

B 有无限多个非同构的不可分解表示。

Problem 2.5
设Q为无无向圈的箭图，PQ为其路径代数。求 PQ的不可约表示，计算它们之间的 Ext1，并
对 PQ的二维表示进行分类。

21



2.10 张量积的表示 2 表示理论的一般结论

Problem 2.6
设 A为代数，V 是 A的表示，对应同态 ρ : A→ End(V )。定义形式形变为形式级数

ρ̃ = ρ0 + tρ1 + · · ·+ tnρn + · · ·

其中 ρi : A→ End(V )为线性映射，ρ0 = ρ，且满足 ρ̃(ab) = ρ̃(a)ρ̃(b)。若存在 b(t) = 1+b1t+· · ·
（bi ∈ End(V )）使得 bρ̃b−1仍为 ρ的形变，则称其与 ρ̃同构。

• 证明若 Ext1(V, V ) = 0，则 ρ的任意形变均为平凡的（即与 ρ同构）。

• (1)的逆命题是否成立？考虑对偶数代数 A = k[x]/x2。

Problem 2.7
设 V 为带对称双线性形式 (·, ·)的有限维复向量空间。Clifford代数 Cl(V )是张量代数 TV 模

去由 v ⊗ v − (v, v)1（v ∈ V）生成的理想的商。若取基 {xi}满足 (xi, xj) = aij，则 Cl(V )由

关系

xixj + xjxi = 2aij , x2i = aii

定义。特别地，若 (·, ·) = 0，则 Cl(V ) = ∧V。

• 证明若 (·, ·)非退化：

– 当 dimV = 2n时，Cl(V )半单且存在唯一 2n维不可约表示；

– 当 dimV = 2n+1时，存在两个这样的表示（此时 Cl(V )为两个矩阵代数的直和）。

提示：对偶数维情形，选取基 {ai, bj} 使得 (ai, bj) = δij/2，并在 S = ∧(a1, . . . , an)
上构造表示，其中 bi 作为对 ai 的“微分”作用。对奇数维情形，添加基向量 c 满足

(c, ai) = (c, bj) = 0且 c2 = 1，并讨论其在 S 上的两种作用。

• 证明 Cl(V )半单当且仅当 (·, ·)非退化。若 (·, ·)退化，求 Cl(V )/Rad(Cl(V ))的结构。

2.10 张量积的表示

Problem 2.8
证明Matm(k)⊗Matn(k) ∼= Matmn(k)

定理 2.7

• V,W 分别是 A,B 的不可约表示，则 V ⊗W 是 A⊗B 的不可约表示。

• 任意 A⊗B 的不可约表示M 均形如 (1)中的形式且唯一。

证明. (1)：由密度定理，A → EndV 和 B → EndW 是满射，故 A ⊗ B → End(V ⊗W )是满

射，于是 V ⊗W 是 A⊗B 的不可约表示。
(2)：我们先证明 V,W 的存在性。令A′, B′分别为A,B在 EndM 中的像，则M 是A′⊗B′
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2.10 张量积的表示 2 表示理论的一般结论

的表示，不妨假设 A,B 是有限维的。我们断言

Rad(A⊗B) = Rad(A)⊗B +A⊗ Rad(B)

事实上，设后者为 J，由于 Rad(A),Rad(B)是幂零的，J 在A⊗B中是幂零的。另一方面 (A⊗
B)/J = (A/Rad(A))⊗ (B/Rad(B))为半单代数的乘积，故也是半单的，于是 J ⊃ Rad(A⊗B)。

综上，结合命题 2.3知 J = Rad(A⊗B)。

于是我们有

(A⊗B)/Rad(A⊗B) = (A/Rad(A))⊗ (B/Rad(B))

由于M 是 (A⊗ B)/Rad(A⊗ B)的不可约表示，显然M 形如 V ⊗W，其中 V 是 A/Rad(A)
的不可约表示，W 是 B/Rad(B)的不可约表示。显然这样的 V,W 是唯一的。
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3 有限群的表示：一些基本结论

3 有限群的表示：一些基本结论

3.1 Maschke定理

定理 3.1 (Maschke)

设 G是有限群，k是域且 chark ∤ |G|，则：

• 代数 k[G]是半单的。

• 存在同构 ψ : k[G] →
⊕

i EndVi, g 7→
⊕

i g
∣∣
Vi
，其中 Vi 是 G 的不可约表示。特别

的，这是一个 G的表示的同构。因此，k[G]的正则表示可以分解成不可约表示的直和：⊕
i dim(Vi)Vi，于是我们有“平方和公式”：

|G| =
∑
i

dim(Vi)
2

证明. 由命题 2.4，(1) =⇒ (2)。下面我们来证明 (1)。

只需要证明对 G 的任意有限维表示 V 与其子表示 W，存在子表示 W ′ ⊂ V 满足 V =

W ⊕W ′在表示的意义下成立。

取任意 Ŵ 使得作为向量空间 V = W ⊕ Ŵ。设 P 为 V → W 的投影算子满足 P
∣∣
W

= Id
且 P

∣∣
Ŵ

= 0。令

P :=
1

|G|
∑
g∈G

ρ(g)Pρ(g−1)

其中 ρ(g)是 g在 V 上的作用，令W ′ := kerP。则 P
∣∣
W

= Id且 P (V ) ⊆W。故 P
2
= P，进而

P 是垂直于W ′的投影，于是作为向量空间 V =W ⊕W ′。进一步对 h ∈ G, y ∈W ′，我们有

Pρ(h)y =
1

|G|
∑
g∈G

ρ(g)Pρ(g−1h)y =
1

|G|
∑
l∈G

ρ(hl)Pρ(l−1)y = ρ(h)Py

故 ρ(h)y ∈ kerP =W ′，于是W ′是 G−不变子空间，故作为表示 V =W ⊕W。

定理 3.1反过来也是成立的。

命题 3.1
若 k[G]是半单的，则 chark ∤ |G|。

证明. 设 k[G] =
⊕r

i=1 EndVi，其中 Vi是所有不可约表示，且 V1 = k为一维平凡表示。则

k[G] = k ⊕
r⊕
i=1

EndVi = k ⊕
r⊕
i=2

diVi

其中 di = dimVi。由 Schur引理，

Homk[G](k, k[G]) = kΛ,Homk[G](k[G], k) = kε

其中表示间的非零同态 ε : k[G]→ k,Λ : k → k[G]在差一个倍数意义下唯一。取 ε(g) = 1, ∀g ∈
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3.2 特征 3 有限群的表示：一些基本结论

G，取 Λ(1) =
∑

g∈G g，则

ε ◦ Λ(1) = ε(
∑
g∈G

g) =
∑
g∈G

1 = |G|

若 |G| = 0则 Λ无左逆，即任意 a ∈ k，(aε) ◦ Λ(1) = 0，矛盾！

Problem 3.1
设 G指数为 pn，证明 G在特征为 p的域 k上的表示平凡。

3.2 特征

设 V 是有限群 G的有限维表示，则其特征 χV : G→ k定义为 χV (g) = Tr
∣∣
V
(ρ(g))。显然 V 作

为 k[G]的表示的特征限制在 G上就得到了 χV (g)。

特征函数是中心函数 (central function)或类函数 (class function)：χV (g)由 g的共轭类唯一确

定，即 χV (hgh
−1) = χV (g)。

记 Fc(G, k) =
{
f : G→ k

∣∣∣f(hgh−1) = f(g), ∀g, h ∈ G)
}
⊂ F (G, k) = {f : G→ k}

定理 3.2
若 chark ∤ |G|，则 G的不可约表示的特征构成了 Fc(G, k)的一组基。

证明. 由 Maschke 定理知，k[G] 是半单的，故由定理 2.4 知这些特征是线性独立的且为
(A/[A,A])∗的基，其中 A = k[G]。又注意到作为 k上的向量空间

(A/[A,A])∗ ∼=
{
ϕ ∈ Homk(k[G], k)

∣∣∣gh− hg ∈ kerϕ∀g, h ∈ G
}

∼=
{
f ∈ F (G, k)

∣∣∣f(gh) = f(hg)∀g, h ∈ G
}

此即 Fc(G, k)。

推论 3.1
若在 k上 |G| 6= 0，则 G的表示的同构类数等于 G的共轭类数。

推论 3.2
若在 k上 |G| = 0，对任意 G的不可约表示 V,W，χV = χW ⇐⇒ V ∼=W。

Problem 3.2
若在 k上 |G| = 0，则 G的表示的同构类数严格小于 G的共轭类数。

3.3 表示的对偶和张量积

若 V 是群 G的表示，则 V ∗同样也是表示，由

ρV ∗(g) = (ρV (g))
−1 = (ρV (g)

−1)T = ρV (g
−1)T

25



3.4 特征的正交性 3 有限群的表示：一些基本结论

给出，即 (ρV ∗(g)f)(v) = f(ρV (g
−1)v)，其特征 χV ∗(g) = χV (g

−1)。

我们有 χV (g) =
∑
λi，其中 λi为 g在 V 中的特征值。这些特征值必定为单位根，因为 ρ(g)|G| =

ρ(g|G|) = ρ(e) = Id。故对复表示

χV ∗(g) = χV (g
−1) =

∑
λ−1
i =

∑
λi =

∑
λi = χV (g)

特别的，V ∼= V ∗当且仅当 χV (g) ∈ R, ∀g ∈ G。
若 V,W 为 G的表示，则 V ⊗W 当然也是表示，由

ρV⊗W (g) = ρV (g)⊗ ρW (g)

给出。因此 χV⊗W (g) = χV (g)χW (g)。

一个有趣的问题是将 V ⊗W 分解成不可约表示的直和，我们下面将会提到。

3.4 特征的正交性

我们在 Fc(G,C)上定义一个 Hermitian内积：

(f1, f2) =
1

|G|
∑
g∈G

f1(g)f2(g)

下面的定理说明 G的不可约表示的特征在上述内积下是 Fc(G,C)的一组正交基。

定理 3.3
对任意表示 V,W，

(χV , χW ) = dim HomG(W,V )

且当 V,W 均为不可约表示时

(χV , χW ) =

1, V ∼=W

0, V ≇W

证明. 由定义

(χV , χW ) =
1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χV (g)χW∗(g) =
1

|G|
∑
g∈G

χV⊗W∗(g) = Tr
∣∣
V⊗W∗(P )

其中 P = 1
|G|
∑

g∈G g ∈ Z(C[G])。若 X 是 G的不可约表示，由 Schur引理知 P 在 X 上作用

为标量，则

P
∣∣
X
=

Id, X = C

0, X 6= C

第二个情形中 Tr(P
∣∣
X
) = 1

|G|
∑

g∈G χX(g) = (χX , χC) = 0，故作用的标量为 0。因此，对于任
何表示 X，算子 P

∣∣
X
都是作用在 X 中 G−不变元素构成的子空间 XG 上的 G−不变投影算
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3.4 特征的正交性 3 有限群的表示：一些基本结论

子。于是

Tr
∣∣
V⊗W∗(P ) = dim HomG(C, V ⊗W ∗) = dim(V ⊗W ∗)G = dim HomG(W,V )

该定理给了一个强力的方法判断一个有限群的表示是否是不可约的：V 不可约当且仅当 (χV , χV ) =

1。

Problem 3.3
设 G是有限群，令 Vi是其不可约表示。对每个 i，定义

ψi =
dimVi
|G|

∑
g∈G

χVi
(g) · g−1 ∈ C[G]

• 证明 ψi在 Vj 上作用为 δij。

• 证明 ψi是幂等的 (idempotents)，即 ψ2
i = ψi，且 ψiψj = 0, ∀i 6= j。

定理 3.4
令 g, h ∈ G，记 Zg 是 g在 G中的中心化子，则

∑
V

χV (g)χV (h) =

|Zg| , g, h共轭0, otherwise

其中求和符号对所有不可约表示 V 求和。

证明. 由上知 χV (h) = χV ∗(h)，故结合Maschke定理原式 =∑
V

χV (g)χV ∗(h) = Tr
∣∣⊕

V V⊗V ∗(g ⊗ h) = Tr
∣∣⊕

V EndV (x 7→ gxh−1) = Tr
∣∣
C[G]

(x 7→ gxh−1)

其中第二个等号是因为

V ⊗ V ∗ ∼= EndV

x⊗ y 7→ (ϕx,y : v 7→ (y, v) · x)

又

(g ⊗ h)(x⊗ y)(v) = (ρV (g)x⊗ ρV ∗(h)y)(v) = 〈ρV ∗(h)y, v〉 · ρV (g)x

=
〈
y, ρV (h

−1)v
〉
· ρV (g)x

故 (g ⊗ h)(ϕx,y) = g ◦ ϕx,y ◦ h−1

若 g, h不共轭，则该迹显然为 0(考虑 x 7→ gxh−1在群元素构成的基下对应的矩阵对角线

为 0)。另一方面，若 g, h共轭，则迹为满足 x = gxh−1 的元素 x的个数，即中心化子 Zg 的

元素个数。
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3.5 酉表示与Maschke定理的另一个对复表示的证明 3 有限群的表示：一些基本结论

3.5 酉表示与Maschke定理的另一个对复表示的证明

定义 3.1
一个群G的有限维酉 (unitary)表示为一个有限维复向量空间 V 伴有G−不变正定的 Hermi-
tian形式 ( , )，这里 G−不变指对任意 g ∈ G，(ρV (g)v, ρV (g)w) = (v, w)。

定理 3.5
若 G有限，则任意 G的有限维表示均有一个酉结构。若该表示为不可约的，则这个结构在

相差一个正倍数的关系下是唯一的。

证明. 对任意 V 上的正定 Hermitian形式 B，定义

B(v, w) =
∑
g∈G

B(ρV (g)v, ρV (g)w)

则 B是 V 上的正定 Hermitian形式，且 ρV (g)是酉算子。若 V 是不可约表示，对 V 的两个正

定 Hermitian形式 B1, B2，则 B1(v, w) = B2(Av,w)对某个同态 A : V → V 成立。由 Schur引
理，A = λId，且显然 λ > 0，得证。

定理 3.6
任意群 G的有限维酉表示 V 是完全可约的。

证明. 令W 为 V 的子表示。令W⊥ 为W 在 V 中对 Hermitian内积的正交补。则W⊥ 为W

的子表示，且 V =W ⊕W⊥。这表明 V 是完全可约的。

考虑G = Z∩C2, n(a, b) := (a+nb, b)，则该表示不可分解，但不是不可约的，其上没有酉结构。

3.6 矩阵元素的正交性

设 V 为有限群 G的不可约表示，令 v1, · · · , vn为 V 的正交基 (在 Hermitian形式下)。V 的矩阵
元素 (matrix elements) tVij(x) = (ρV (x)vi, vj)。

回忆在 F (G,C)上定义的形式 (f, g) = 1
|G|
∑

x∈G f(x)g(x)

命题 3.2
V,W 是不可约表示，

(tVij , t
W
i′j′) =

0, V ≇W

δii′δjj′ · 1
dimV , V

∼=W

即 G的不可约表示的矩阵元素构成了一组 F (G,C)的正交基。

证明. 设 {vi} , {wi} 分别为 V,W 在对应正定不变 Hermitian 形式下的正交基。取 w∗
i : u 7→

(u,wi) ∈W ∗。

断言：这给出了一个W ∗上的酉结构，(gw)∗ = g · w∗。

28



3.7 特征表 3 有限群的表示：一些基本结论

则对 x ∈ G我们有 (xw∗
i , w

∗
j ) = (xwi, wj)，于是我们有

(tVij , t
W
i′j′) = |G|

−1
∑
x∈G

(xvi, vj)(xwi′ , wj′) = |G|−1
∑
x∈G

(xvi, vj)(xw
∗
i′ , w

∗
j′) = (P (vi⊗w∗

i ), vj⊗w∗
j′)

其中 P = 1
|G|
∑

x∈G x。若 V ≇W，由于 P 投影到平凡表示，而该表示在 V ⊗W 中并不存
在，故上式为 0。若 V ∼=W，(tVij , t

V
i′j′) = (P (vi⊗ v∗i′), vj ⊗ v∗j′)，注意到 (V ⊗V ∗)G由单位向量

f := 1√
dimV

∑
i vi⊗v∗i 生成，故 (V ⊗V ∗)G ∼= C。故 P (vi⊗v∗i′) = (vi⊗v∗i′ , f) ·f = 1√

dimV ·f ·δii′，
故

(tVij , t
V
i′j′) =

1√
dimV

δii′(f, vj ⊗ v∗j′) =
1

dimV
δii′δjj′

由于 dimF (G,C) = |G| =
∑

V (dimV )2，故确实为基。

3.7 特征表

在本节中，k = C，G是一个有限群。
G的特征表结构如下：

G g1 g2 · · · gi

#
V1 (平凡) 1 1 1 1

V2 dimV2

...
...

Vi dimVi χV (gi)

其中第一行为 G的共轭类，第二行为对应共轭类的元素个数。

已证明结论：

• 正交关系：

1

|G|
∑
g∈G

χVi
(g)χVj

(g) =
1

|G|
∑
Ci

|Ci|χVi
(g)χVj

(g) =

1 若Vi = Vj

0 otherwise

• 特征标和关系： ∑
Vi

χVi
(g) · χVj

(h) =

|Zg| 若g与h共轭0 otherwise

我们来看一些简单的例子：

• G = S3

S3 Id (12) (123)

# 1 3 2

C 1 1 1

sign 1 −1 1

C2 2 0 1
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3.8 Frobeniu行列式 3 有限群的表示：一些基本结论

这里 S3 ↷ C2 =
{
(x1, x2, x3) ∈ C3

∣∣∣x1 + x2 + x3 = 0
}
。

断言：

Sn ↷ Cn−1 =
{
(x1, · · · , xn) ∈ Cn

∣∣∣x1 + · · ·+ xn = 0
}

为不可约表示，这称为 Sn的标准表示 (standard representation)。

断言：若 V 是不可约表示，则 V ⊗ sign也是不可约表示。由 χV⊗sign(g) = χV · (−1)l(g)即得。

• G = S4

S4 Id (12) (12)(34) (123) (1234)

# 1 6 3 8 6

C 1 1 1 1 1

sign 1 −1 1 −1 1

C3 3 1 −1 0 −1
C3 ⊗ sign 3 −1 1 0 1

C2 2 0 2 −1 0

最后一个由 H := {Id, (12)(34), (13)(24), (14)(23)} / S4与 S4 ↠ S4/H ∼= S3给出。

• G = A4

A4 Id (123) (132) (12)(34)

# 1 4 4 3

C 1 1 1 1

Cω 1 ω ω2 1

C2
ω 1 ω2 ω 1

C3 3 0 0 −1

我们可以通过特征表来计算 Vi ⊗ Vj =
∑
Nk
ijVk 中的系数 Nk

ij = (χiχj , χk)。

3.8 Frobeniu行列式

设 G是有限群，
{
xg

∣∣∣g ∈ G}为变量。
定义 3.2
考虑 |G| × |G|矩阵 XG，其中 ag,h := xg−1h，称 det(XG)为 Frobenius行列式。
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3.8 Frobeniu行列式 3 有限群的表示：一些基本结论

例 3.1

考虑 G = Cn =
〈
r
∣∣∣rn = 1

〉
，则

XG =


x0 x1 · · · xn−1

xn−1 x0 · · · xn−2

...
... . . . ...

x1 x2 · · · x0


断言：

det(Xcn) =
n−1∏
j=0

(
n−1∑
k=0

ζjkxk), ζ = e2πj/n

=
n−1∏
j=0

(
n−1∑
k=0

χj(r
k)xk), χj为第j个不可约表示

定理 3.7 (Dedekind)

设 G是有限群，则

detXG =
∏
χ

(
∏
g∈G

χ(g)xg)

χ对所有 G→ C∗的群同态求和。

定理 3.8 (Frobenius)

存在互不成比例的不可约多项式 Pj(x)满足：

detXG =

r∏
j=1

Pj(x)
degPj

其中 r为 G的共轭类数。

证明. 先证明一个引理：

引理 3.1
设 Y = (yij)，则 detY 在 {yij}上为不可约多项式。

引理的证明. 设 X = t · Id +
∑n

i=1 xiEi,i+1，其中下标模 n理解，Ei,j 是初等矩阵。则

det(X) = tn − (−1)nx1 · · ·xn显然不可约。因此，行列式 det(Y )是不可约的（这是因为

当 Y 特化为X 时行列式保持不可约性，且齐次多项式的不可约因子本身必须是齐次的，

因此无法通过特化得到非零常数）。

回到原题。令 V = C[G]为群 G的正则表示。考虑

L(x) =
∑
g∈G

xgρ(g),
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3.8 Frobeniu行列式 3 有限群的表示：一些基本结论

其中 ρ(g) ∈ End(V )由 g诱导。L(x)作用于元素 h ∈ G的结果为

L(x)h =
∑
g∈G

xgρ(g)h =
∑
g∈G

xggh =
∑
z∈G

xzh−1z.

因此，线性算子 L(x)在基 g1, g2, . . . , gn下的矩阵为XG的列置换矩阵，故其行列式至多相差

一个符号。

根据Maschke定理，我们有

detV L(x) =
r∏
i=1

(detVi
L(x))dimVi ,

其中 Vi是 G的不可约表示。令 Pi = detVi
L(x)。设 {eim}为 Vi的基，Ei,j,k ∈ End(Vi)为这些

基下的矩阵单位元。则 {Ei,jk}构成 C[G]的一组基，且

L(x)|Vi
=
∑
j,k

yi,jkEi,jk,

其中 yi,j,k 是 C[G]上通过线性变换与 xg 关联的新坐标。于是

Pi(x) = detVi
L(x) = det(yi,jk).

因此，由引理 Pi 是不可约的且互不成比例（因为它们依赖于不同的变量集合 yi,jk）。定理得

证。
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4 有限群的表示：一些进阶结论

4.1 Frobenius-Schur指标

设 G为有限群，V /C为 G的不可约表示。

定义 4.1
称 V 是

• 复型 (complex type)，若 V ≇ V ∗。

• 实型 (real type)，若其存在非退化 G−不变对称形式。

• 四元数型 (quaternionic type)，若其存在非退化 G−不变反对称形式。

Problem 4.1
•

EndR[G]V =


C, V为复型

Mat2(R), V为实型

H, V为四元数型

其中 H为四元数。

• V 为实型⇐⇒ V = C⊗R VR，对某个 G在 R上的表示 VR成立。

定理 4.1
V /C为 G的不可约表示，则

1

|G|
∑
g∈G

χV (g
2) =


1, V为实型

−1, V为四元数型

0, V为复型

证明. 对矩阵 A ∈ EndV，设 λ1, · · · , λn 为其特征值。则 A ⊗ A
∣∣
S2V
有特征值

{
λiλj

∣∣i ≤ j}，
A⊗A

∣∣
∧2V
有特征值

{
λiλj

∣∣i < j
}
，故

TrV (A2) =
∑

λ2
i = TrS2V (A⊗A)− Tr∧2V (A⊗A)

于是

χV (g
2) = χS2V (g)− χ∧2V (g)
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4.1 Frobenius-Schur指标 4 有限群的表示：一些进阶结论

令 P = 1
|G|
∑

g∈G g，对任意 G的表示 U，P
∣∣
U
为其在 UG上的投影。故

1

|G|
∑
g∈G

χV (g
2) = χS2V (P )− χ∧2V (P )

= dim(S2V )G − dim(∧2V )G

=


1, V为实型

−1, V为四元数型

0, V为复型

最后一个等号是因为对于非退化的 G−不变形式 V × V → C诱导了一个同构 V ∗ ∼= C，故

HomG(V
∗, V ) ∼= (V ⊗ V )G = (S2V )G ⊕ (∧2V )G =

0, V ∗ ≇ V

C, V ∗ ∼= V

定义 4.2
定义不可约表示 V 的 Frobenius-Schur指标为

FS(V ) =


1, V为实型

−1, V为四元数型

0, V为复型

定理 4.2

#
{
g ∈ G

∣∣∣g2 = 1
}
=
∑
V

dimV · FS(V )

其中 V 对所有不可约表示求和。

证明. 注意到 g2 = 1当且仅当 χC[G](g
2) = |G|，故

#
{
g ∈ G

∣∣∣g2 = 1
}
=

1

|G|
∑
g∈G

χC[G](g
2)

=
1

|G|
∑
g∈G

∑
V

dimV · χV (g2)

=
∑
V

dimV · FS(V )
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4.2 代数数和代数整数 4 有限群的表示：一些进阶结论

推论 4.1
设有限群 G的所有表示定义在 R上 (即所有复表示都由实表示复化得到)，则

#
{
g ∈ G

∣∣∣g2 = 1
}
=
∑
V

dimV

Problem 4.2
证明所有非平凡的奇数阶有限群 G有一个不在 R上定义的不可约表示。

4.2 代数数和代数整数

定义 4.3
z ∈ C称为代数数 (algebraic number)(代数整数 (algebraic integer))，若 z为一个首一的有理

(整数)系数多项式的根。

定义 4.4
z ∈ C称为代数数 (algebraic number)(代数整数 (algebraic integer))，若 z 为一个有理 (整数)
系数矩阵的特征值。

命题 4.1
上述两定义等价。

证明. 注意到 xn + a1x
n−1 + · · ·+ an是


0 −an

1 0
...

. . . . . . −a2
1 −a1

的特征多项式即证。

记 Q为全体代数数，A为所有代数整数。

命题 4.2

• A是环。

• Q是域。

证明. 设 α, β 分别是 A,B 的特征值。则 α ± β 是 A⊗ Id± Id⊗ B 的特征值，α · β 是 A⊗ B
的特征值，故 A,Q是环。

若 α ∈ Q是 P (x)的根，设 d := degP，则 α−1是 xdP ( 1
x
)的根，故 Q是域。

命题 4.3
A ∩Q = Z
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4.3 Frobenius可除性 4 有限群的表示：一些进阶结论

定义 4.5
任意代数数 α有极小多项式 (minimal polynomial) P (x)是满足 P (α) = 0的次数最小的首一

有理系数多项式。所有 P (x)的根称为 α的代数共轭 (algebraic conjugates)。

引理 4.1

α1, · · · , αm ∈ Q，则所有 α1 + · · ·+αm的代数共轭均形如 α′
1 + · · ·+α′

m，其中 α′
i为 αi的代

数共轭。

证明. 只需证m = 2的情形。设 αi是Ai的特征值，且其特征多项式为极小多项式，则 α1+α2

是 A := A1 ⊗ Id + Id ⊗ A2 的特征值，任意 α1 + α2 的代数共轭 α′ 均为 A的特征值，于是

α′ = α′
1 + α′

2，其中 α′
1, α

′
2为 A的特征值。

4.3 Frobenius可除性

定理 4.3
G为有限群，V /C为其不可约表示，则 dimV | |G|

证明. 先证一个引理：

引理 4.2

对任意 G的共轭类 C，λ := χV (g) · |C|
dimV ∈ A，其中 g ∈ C。

引理的证明. 设 P =
∑

g∈C g ∈ Z(Z[G])，则 P
∣∣
V
= λ · Id，于是 |C| · χ(g) = λ · dimV。

由于 Z[G]是有限生成 Z−模，故对任意 x ∈ Z[G]，子环 Z[x]是有限生成模，于是
存在 n使得 Z[x] = {1, x, · · · , xn−1}生成的子模，故 x在 Z上是整的。于是存在整系数
多项式 f(x)使得 f(P ) = 0，即 f(λ) = 0。

设 C1, · · · , Cn为G的共轭类。λi := χV (gi) · |Ci|
dimV , gi ∈ C，则由引理 λi ∈ A。由于 χV (gi)

是 A中的单位根且 A是环，故
∑

i λi · χV (gi) ∈ A。
另一方面∑

i

λiχV (gi) =
∑
i

|χV (gi)|2 ·
|Ci|

dimV
=
|G|

dimV
(χV , χV ) =

|G|
dimV

∈ Q

综上有 |G|
dimV ∈ A ∩Q = Z，即证。

定理 4.4
V /C是有限群 G的不可约表示，C 为 G的中心，则 dimV | |G| / |C|。
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4.4 Burnside定理 4 有限群的表示：一些进阶结论

4.4 Burnside定理

引理 4.3
若 ε1, · · · , εn为单位根，满足 ε1+···+εn

n
∈ A，则要么 ε1 = · · · = εn，要么 ε1 + · · ·+ εn = 0。

证明. 设 a = ε1+···+εn
n

，若 ε不全相等，则 |a| < 1。εi的代数共轭还是单位根。而 a的代数共

轭形如

a′ =
ε′1 + · · ·+ ε′n

n

其中 ε′i是 εi的代数共轭。故 |a′| < 1，于是 |
∏
a′ a

′| < 1。但该乘积为整数，故
∏
a′ a

′ = 0，于

是 a = 0。

命题 4.4
V 为 G的不可约表示，C ⊆ G为共轭类满足 (|C| , dimV ) = 1，则 ∀g ∈ C，要么 χV (g) = 0，

要么 ρV (g) = λg · IdV 对某个 λg ∈ k∗成立。

证明. 设 n = dimV，且 ε1, · · · , εn是 ρV (g)的特征值。则 εi是单位根，且 χV (g) = ε1+· · ·+εn。
由于 (|C| , n) = 1，存在 a, b ∈ Z使得 a |C|+ bn = 1。于是

a
|C| · χV (g)

n
+ bχV (g) =

χV (g)

n
=
ε1 + · · ·+ εn

n

由引理 4.2知 |C|χV (g)
n

∈ A，又 χV (g) = ε1 + · · ·+ εn ∈ A，结合 A是环知 ε1+···+εn
n

∈ A，
由引理 4.3即得。

定理 4.5
设 G为有限群，C 是 G的共轭类，|C| = pa 其中 p为素数，a为正整数。则 G有一个非平

凡正规子群。

证明.

Irr(G) = {trivial} t
{
V ∈ Irr(G)

∣∣∣pmin dimV
}
t
{
V ∈ Irr(G)

∣∣∣p ∤ dimV, V 6= trivial
}

后两者记为 D 与 N。取 g ∈ C，g 6= e。对任意 V ∈ D, 1
p

dimV · χV (g)) ∈ A，故∑
V ∈D

1
p

dimV ·χV (g) = b ∈ A，再由正交性条件推出
∑

V ∈Irr(G) dimV ·χV (g)) = 0。进一步有

1 + pb+
∑
V ∈N

dimV · χV (g) = 0

又 A ∩Q = Z, b ∈ A，于是对某个 V ∈ N，χV (g) 6= 0

由命题 4.4，结合 |C| = pq, (|C|, dimV ) = 1知存在 λ ∈ k∗ 使得 χV (g) = λ IdV。故对任
意 h ∈ C 有 ρV (h) = λ · IdV，进一步有 ∀g1, g2 ∈ C, g1g−1

2 ∈ ker ρV =: H。于是 {e} 6= H / G。

由于 V 非平凡故 H 6= G。因此，H 是 G的一个非平凡真正规子群。
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4.5 积的表示 4 有限群的表示：一些进阶结论

定义 4.6
一个群 G称为可解的 (solvable)，若存在 {e} = G1 ◁G2 ◁ · · · ◁Gn = G使得 Gi−1 ⊂ Gi 为

正规子群，Gi/Gi−1为阿贝尔群。

定理 4.6 (Burnside)

若 |G| = paqb，p, q为素数，a, b ≥ 0，则 G可解。

证明. 反证法。设 G是最小的不可解群，其阶为 paqb。则 G必为单群，于是 Z(G) = {e}。
设 G =

⊔
iCi，{Ci}是共轭类。由定理 4.5知 p · q | |Ci|对所有 Ci 6= {ei}成立。故

|G| = paqb =
∑
|Ci| = 1 +

∑
Ci ̸={e}

|Ci|

矛盾！

4.5 积的表示

定理 4.7
设 G,H 是有限群，Irr(G) = {Vi} , Irr(H) = {Wj}，则 Irr(G×H) = {Vi ⊗Wj}

证明. 由定理 2.7即得。

4.6 虚拟表示

定义 4.7
有限群 G 的虚拟表示 (virtual representation) 是一个不可约表示的整系数线性组合 V =∑
niVi, ni ∈ Z，其特征 χV :=

∑
niχVi

。

引理 4.4
设 V 是虚拟表示，其特征为 χV，若 (χV , χV ) = 1且 χV (1) > 0，则 χV 为 G某个不可约表

示的特征。

证明. χV =
∑
niχVi

，则 (χV , χV ) =
∑
n2
i = 1，又 χV (1) =

∑
ni dimV > 0，故 ni中只有一

者为 1其余为 0。

4.7 诱导表示

定义 4.8
对群 G的表示 V 与子群 H ⊂ G，存在一个自然 H 的表示。V 在 H 上的限制 (restriction)
ResGHV 为由向量空间 V 与限制在其上的作用 ρResGHV = ρV

∣∣
H
构成的表示。
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4.8 诱导表示特征的 Frobenius公式 4 有限群的表示：一些进阶结论

反过来，我们有一种自然但不平凡的方式对给定子群 H 的表示 V 构造 G的表示。

定义 4.9

设 G是群，H ⊂ G为子群，V 是H 的表示，则诱导表示 (induced representation) IndGHV 是
G的表示，由

IndGHV =
{
f : G→ V

∣∣∣f(hx) = ρV (h)f(x)∀x ∈ G,h ∈ H
}

与作用 g(f)(x) = f(xg), ∀g ∈ G给出。

由 g(f)(hx) = f(hxg) = ρV (h)f(xg) = ρV (x)g(f)(x)故 g ∈ End(IndGHV )，结合 (g1g2)(f)(x) =

f(xg1g2) = g2f(xg1) = g2(g1f(x))知 IndGHV 确实是表示。
事实上，我们自然地有 IndGHV ∼= HomH(k[G], V )。于是：

命题 4.5

IndGHV ∼= k[G]⊗k[H] V

另外，注意到如果我们从所有H 对G的右陪集 σ中取出一个代表元 xσ，则任意 f ∈ IndGHV 由
{xσ}唯一确定。于是我们有

dim(IndGHV ) = dimV · |G|
|H|

考虑群 K ⊂ H ⊂ G，考虑 K 对 H、H 对 G、K 对 G的右陪集的代表元分别为 {xi}、{yj}、
{zk}，我们有一一对应 {xi} × {yj} ↔ {zk}。于是

HomH(k[G],HomK(k[H], V ))→ HomK(k[G], V )

ϕ :
k[G]→ HomK(k[H], V )

yj 7→ (xi 7→ ϕ(yj)(xi))
7→ φ : zk 7→ ϕ(yj)(xi)

是同构，这表明 IndGHIndHKV ∼= IndGKV。

4.8 诱导表示特征的 Frobenius公式

现在我们来计算 IndGH(V )的特征 χ。对右陪集 σ ∈ G/H，取代表元 xσ

定理 4.8

χ(g) =
∑

σ∈G/H:xσgx
−1
σ ∈H

χV (xσgx
−1
σ )

这个式子被称作 Frobenius公式。

注：若 chark与 |H|互素，则有

χ(g) =
1

|H|
∑

x∈G:xgx−1∈H

χV (xgx
−1)
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4.9 Frobenius互反律 4 有限群的表示：一些进阶结论

证明. 对 G的 H−右陪集 σ，定义

Vσ =
{
f ∈ IndGHV

∣∣∣f(g) = 0, ∀g /∈ σ
}

则我们有

IndGHV =
⊕
σ

Vσ

于是

χ(g) =
∑
σ

χσ(g)

其中χσ是 ρ(g)对应在 Vσ的迹。由于 g(σ) = σg依旧是H−右陪集，故若 σ 6= σg则χσ(g) = 0。

若 σ = σg 则 xσg = hxσ，其中 h = xσgx
−1
σ ∈ H。考虑 α : Vσ → V, f 7→ f(xσ)。由于

f ∈ Vσ 由 f(xσ)唯一确定，故 α是同构，我们有

α(gf) = g(f)(xα) = f(xσg) = f(hxσ) = ρV (h)f(xσ) = hα(f)

即 gf = α−1hα(f)，这表明 χσ(g) = χV (h)，于是

χ(g) =
∑

σ∈H\G:σg=σ

χV (xσgx
−1
σ )

4.9 Frobenius互反律

定理 4.9
设群 H ⊂ G，V 与W 分别是 G与 H 的表示。则

HomH(V, IndGHW ) ∼= HomH(ResGHV,W )

证明. 我们有
HomA(P ⊗B W,V ) ∼= HomB(W,HomA(P, V ))

带入 A = k[G], B = k[H], P = k[G]即得。

4.10 Mackey公式

设 H,K ⊂ G是子群，ρ : H → GL(W )，V = IndGHW，设 G =
∐
s∈SKsH 为双陪集分解。对

任意 s ∈ S，取 Hs := sHs−1 ∩K 与 ρs : Hs → GL(W ), x 7→ ρ(s−1xs)，这是一个表示，记作Ws。

定理 4.10 (Mackey)

ResGKIndGH(W ) =
⊕
s∈S

IndKHs
(Ws)
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4.11 正规子群 4 有限群的表示：一些进阶结论

证明.
LHS =

⊕
g∈G/H

g ⊗W =
⊕
s∈S

⊕
g∈KsH/H

g ⊗W

=
⊕
s∈S

⊕
g∈K/Hs

gs⊗W

=
⊕
s∈S

IndKHs
(s⊗W )

∼=
⊕
s∈S

IndKHs
Ws

推论 4.2 (Mackey不可约性判定)

设 chark = 0且 k代数闭。则 V = IndGHW 不可约当且仅当W 不可约且对 ∀s ∈ G \H ，两个
Hs的表示 ρs与 ResHHs

(ρ)不交。

证明. 由假设 k[G]是半单的。于是 V 不可约当且仅当 HomG(V, V ) = k。但

HomG(V, V ) = HomG(IndGHW,V )

(Frobenius reciprocity) = HomH(W,ResGHV )

(Mackey′s formula) = ⊕s∈H\G/HHomH(W, IndHHs
(Ws))

= ⊕s∈H\G/HHomHs
(ResHHs

W,Ws)

由于当 s = e时，HomHs
(ResHHs

W,Ws) = HomH(W,W ) ⊇ k，故 V = IndGHW 不可约当且仅
当W 不可约且对 ∀s ∈ G \H，HomHs

(ResHHs
W,Ws) = {0}。

4.11 正规子群

命题 4.6
令 A是群 G的一个正规子群，ρ : G→ GL(V )是 G的一个不可约表示，则

• 或者存在 G的一个子群 H 6= G且包含 A，以及 H 的一个不可约表示 σ使得 ρ由 σ诱

导。

• 或者 ρ在 A上的限制是同型的 (isotypic)，即是一些同构的不可约表示的直和。

证明.
ResGAV =

⊕
i

Wi ⊗ Ui

其中 {Wi} 是 A 的不可约表示，Ui := HomA(Wi, V )(这称为同型分解 (isotypical decomposi-
tion))。令 Vi =Wi ⊗Ui。由于 A◁G，故 ∀g ∈ G, gAg−1 = A。于是 gWi ≤ ResGAV 为 A的表

示，结合Wi 为 A的不可约表示知 gWi 为不可约表示，于是 ∃j，gWi = Wj。于是 g ∈ G为
{Vi}的一个置换。由于 V 不可约，V =

∑
g∈G gVi。
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4.12 半直积 4 有限群的表示：一些进阶结论

取 Vi0 ∈ {Vi}，若 Vi0 = V，则为 (2)。若 Vi0 6= V，令H :=
{
s ∈ G

∣∣∣sVi0 = Vi0

}
⊃ A。于

是 H ⊊ G，且 V =
⊗

g∈G/H gVi0
∼= IndGHVi0 为 (1)。

推论 4.3
A◁G，A阿贝尔群，则对任意 G的表示 V，

dimV | (G : A)

证明. 对 |G|归纳。若为 (1)，V = IndGHW，则 dimW | (H : A)，故 dimV | (G : A)。

若为 (2)，令 G′ = ρV (G), A
′ = ρV (A)，则 G/A→ G′/A′是满射，故 (G′ : A′) | (G : A)。

由 A是阿贝尔群，ResGAV = Wi ⊗ Ui，其中Wi 为 A的一维表示，于是 A′ 是标量 =⇒ A′ ⊂
Z(G′) =⇒ dimV | (G′ : A′) =⇒ dimV | (G : A)。

4.12 半直积

设 A,H 是群 G的两个子群，且 A是正规子群，做如下假设：

• A是 Abel的。

• G是 H 和 A的半直积 (这意味着 G = A ·H 且 A ∩H = {1}，换句话说，G的每一个元素都
可以唯一的写成乘积 ah的形式，a ∈ A, h ∈ H)

我们证明，G的不可约表示可以由 H 的某些子群的不可约表示构造出来。

首先因为A是Abel的，所以它的不可约特征标都是一级的，并且构成一个群X = Hom(A,C∗)。

群 G如下作用于 X 上：对于 s ∈ G,χ ∈ X, a ∈ A,

(sχ)(a) = χ(s−1as)

令 (χi)i∈X/H 是H在X中轨道的一个代表系，对于每一 i ∈ X/H，令Hi是H中使得 hχi = χi

的元素 h所成的子群，又令 Gi = A ·H 是 G中相应的子群。对于 a ∈ A, h ∈ Hi，令

χi(ah) = χi(a)

这样就将函数 χi开拓到 Gi上。对于一切 h ∈ Hi，都有 hχi = χi。利用这一事实就能看出 χi是 Gi

的一个一级特征标。现在令 ρ是 Hi的一个不可约表示，作 ρ与典范射影 Gi → Hi的合成映射，就

得到 Gi的一个不可约表示 ρ̃。最后作 χi与 ρ̃的张量积我们得到 Gi的一个不可约表示 χi ⊗ ρ̃，这诱
导出 G上的表示 θi,ρ。

命题 4.7

• θi,ρ是不可约的。

• 若 θi,ρ与 θi′,ρ′ 同构，则 i = i′且 ρ与 ρ′同构。

• G的每一不可约表示都与某一 θi,ρ同构。
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4.13 Artin定理 4 有限群的表示：一些进阶结论

证明. 我们利用Mackey判定来证明 (1)。设 s /∈ Gi = A ·Hi，且Ks = Gi ∩ sGis−1。需验证：

若将 Gi 的表示 χi ⊗ ρ̂分别与单射 Ks → Gi，x 7→ x和 x 7→ s−1xs合成，则得到 Ks 的两个

不同表示。为此，只需证明这两个表示在 Ks 的子群 A上的限制不同。第一个表示在 A上的

限制是 χi的一个倍数，而第二个表示的限制是 sχi的倍数。由于 s /∈ A ·Hi，有 sχi 6= χi，故

两表示确实不同。

现证明 (2)。首先，θi,ρ在A上的限制仅包含属于轨道Hχi的特征标 χ，这确定了 i。其次，

设W 为 θi,ρ 的表示空间，Wi 是W 中对应 χi 的子空间（即满足 θi,ρ(a)x = χi(a)x (∀a ∈ A)
的 x ∈W）。子空间Wi在Hi下稳定，且可直接验证Hi在Wi中的表示与 ρ同构，故 θi,ρ也

确定了 ρ。

最后，设 σ : G→ GL(W )为 G的不可约表示，并设W =
⊕

χ∈XWχ 是 ResAW 的典范
分解。至少存在一个非零的Wχ。若 s ∈ G，则 σ(s)将Wχ 映射至Ws(χ)。群 Hi 保持Wχ 不

变；取Wi为Wχi
的不可约子 C[Hi]-模，对应表示 ρ。显然Gi = A ·Hi的表示与 χi ⊗ ρ̂同构。

因此，σ在 Gi上的限制至少包含一次 χi ⊗ ρ̂。故

1 ≤ dim HomGi
(χi ⊗ ρ̃,ResGGi

W ) ≤Frobenius= dim HomG(θi,ρ,W )

，由于 θi,ρ和W 不可约，故 σ与 θi,ρ同构，即证 (3)。

4.13 Artin定理

在本节中，k = C，G是有限群。
回忆 Fc(G,C)为 G上的复值类函数，∀ϕ,ψ ∈ Fc(G,C)，

〈ϕ,ψ〉 := 1

|G|
∑
g∈G

ϕ(g) · ψ(g)

命题 4.8
对子群 H ⊆ G，我们有

ResGH : Fc(G,C)→ Fc(H,C)

IndGH : Fc(H,C)→ Fc(G,C)

f 7→

IndGHf(x) =
1

|H|
∑
g∈G

gxg−1∈H

f(gxg−1)


容易验证 IndGHf ∈ Fc(G,C)。

于是我们有
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4.13 Artin定理 4 有限群的表示：一些进阶结论

命题 4.9

• 若 ϕi = χVi
, i = 1, 2为两个表示的特征标，则

〈ϕ1, ϕ2〉 = dim HomG(V2, V1)

• ( Frobenius互反律)若 ψ ∈ Fc(H,C), ϕ ∈ Fc(G,C)，则〈
IndGHψ,ϕ

〉
G
=
〈
ψ,ResGHϕ

〉
H

• 若 ψ ∈ Fc(H,C), ϕ ∈ Fc(G,C)，则

IndGH(ψ · ResGH(ϕ)) = IndGH(ψ) · ϕ作为 G−表示IndGH(W ⊗ ResGHV ) ∼= IndGHW ⊗ V

g ⊗ (w ⊗ v) 7→ g ⊗ w ⊗ gv


考虑

R(G) := Zχi ⊕ · · · ⊕ Zχn

其中 {χ1, · · · , χn}为G的不同的不可约特征标，由 χi ·χj ∈ R(G)，故 R[G] ⊆ Fc(G,C)为子环，且

C⊗Z R(G) ∼= Fc(G,C)

定义 4.10 (Artin定理)

令 X 是有限群 G的一个子群族，令

Ind :
⊕
H∈X

R(H) 7→ R(G)

是由映射族 IndGH ,H ∈ X 定义的同态，则

G =
⋃
g∈G
H∈X

gHg−1 ⇐⇒ Ind的余核有限

注：

• R(G)作为群是有限生成的，故 cokerInd有限当且仅当对任意G的特征χ，存在χH ∈ R(H), d ∈
Z≥1满足

dχ =
∑
H∈X

IndGH(χH)

• 设 X 为所有 G的循环子群，则 G =
⋃

g∈G
H∈X

gHg−1，于是任意 G的特征标都是这些循环子群

的特征标的有理线性组合。
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证明. ⇐=：设 S =
⋃

g∈G
H∈X

gHg−1，对任意 fH ∈ R(H)，
∑

H∈X IndGH(fH)在 G \ S 上取到 0。

于是每个 f ∈ R(G)⊗Z C = Fc(G,C)在 G \ S 上取到 0。故 G = S。

=⇒：只需证
Q⊗ Ind :

⊕
H∈X

Q⊗R(H)→ Q⊗R(G)是满射

即证

C⊗ Ind :
⊕
H∈X

C⊗R(H)→ C⊗R(G)是满射

即证

C⊗ Ind :
⊕
H∈X

FC(H,C)→ Fc(G,C)是满射

(两者都等价于矩阵 A的行线性无关这一事实，其中 A是一个这样的矩阵：其列由关于 G的

不可约表示的诱导表示 IndGHV（针对不同子群 H 和表示 V）的分解系数构成。)
由对偶性，C ⊗ Ind 是满射等价于 C ⊗ Res : Fc(G,C) → ⊕H∈XFc(H,C) 是单射，由于

G =
⋃

g∈G
H∈X

gHg−1，这是显然的。

=⇒的另一个证明. 设 A是循环群，定义 θA(x) =

|A| ,若x生成A

0 , otherwise

引理 4.5
•

|G| =
∑
A⊆G

IndGAθA

其中求和号对所有 G的循环群 A求和。

• 若 A是循环群，则 θA ∈ R(A)。

引理的证明. (1)：

IndGAθA(x) =
1

|A|
∑
y∈G

yxy−1∈A

θA(yxy
−1) =

∑
y∈G

yxy−1 生成A

1

故 ∑
A⊆G

IndGAθA(x) =
∑
y∈G

1 = |G|

(2)：对 |A|归纳。由 (1)知

θA = |A| −
∑
B⊊A

IndAB(θB)

若 θB ∈ R(B)则 IndABθB ∈ R(A)，结合 |A| ∈ R(A)知 θA ∈ R(A)。
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回原题，注意到若对某个 g ∈ G，H ′ ⊆ gHg−1 ⊆ G，则

IndGH′W ′ = IndGgHg−1IndgHg
−1

H′ W ′

因此

ImIndGH′ ⊆ ImIndGgHg−1 = ImIndGH

由于 G =
⋃

g∈G
H∈X

gHg−1，任意循环子群均包含于某个 gHg−1。于是我们可以设 X ={
G的循环子群

}
。由引理知 |G| =

∑
A∈X IndGA(θA)且 θA ∈ R(A)，故 |G| ∈ ImInd。

由于 IndGH(ϕ · ResGHψ) = (IndGHϕ) · ψ，故 ImInd ⊂ R(G) 是理想。结合 |G| ∈ ImInd 知
cokerInd是有限的。
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5 Sn表示

5.1 对称函数

定义 5.1
一个划分 (partition)为任意 (有限或无限)非负整数序列 λ = (λ1, λ2, · · · )满足 λ1 ≥ λ2 ≥ · · ·
且仅含有限多个非零元。有时我们将 λ记作 (1m12m2 · · · )，其中mi = #

{
j
∣∣∣λj = i

}
。仅当两

个划分仅相差末尾的 0时，称这两个划分相等，例如 (3, 1) = (3, 1, 0) = (3, 1, 0, 0, · · · )
定义 λ的长度 (length) l(λ) := #

{
i
∣∣∣λi 6= 0

}
，λ的权 (weight) |λ| :=

∑
λi。

若 |λ| = n，我们称 λ为一个 n的划分，这样的划分构成集合 Pn，记 P :=
⋃
n Pn。

定义 5.2
P 上的优于关系：λ ⊵ µ当且仅当 |λ| = |µ|且 λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi, ∀i ≥ 1。

λ . µ当且仅当 λ ⊵ µ且 λ 6= µ。

定义 5.3
λ的 Young图定义为

Yλ =
{
(i, j) ∈ Z2

∣∣∣1 ≤ j ≤ λi}

定义 5.4
λ的共轭划分 λ′定义为

λ′
j := #

{
(i, j) ∈ Yλ

∣∣∣i ≥ 1
}

等价的，Yλ′ 与 Yλ关于对角线对称。

命题 5.1

λ ⊵ µ⇐⇒ µ′ ⊵ λ′

定义 5.5

∧n := Z[x1, · · · , xn]Sn =
⊕
r≥0

∧rn

为 n元对称多项式，其中 ∧rn为 r次齐次 n元多项式。

定义 5.6
对每个 α = (α1, · · · , αn) ∈ Nn，令 xα := xα1

1 · · ·xαn
n 。令 λ为划分满足 l(λ) ≤ n，定义

mλ(x1, · · · , xn) =
∑
α

xα

其中求和号对所有 λ = (λ1, λ2, · · · , λn)的不同排列求和。
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命题 5.2

•
{
mλ

∣∣∣l(λ) ≤ n}为 ∧n的 Z−基。

•
{
mλ

∣∣∣l(λ) ≤ n, |λ| = r
}
为 ∧rn的 Z−基。

• 当 n ≥ r时
{
mλ

∣∣∣ |λ| = r
}
为 ∧rn的 Z−基。

通常，使用无限多个变量的对称函数更为方便。对分次环存在满射

∧n+1 → ∧n, xn+1 7→ 0

由定义

mλ(x1, · · · , xn+1) 7→

mλ(x1, · · · , xn) , l(λ) ≤ n

0 , l(λ) > n

将其限制在 r次多项式上就有 ∧n+1 ↠ ∧rn且当 r ≤ n时为双射。

定义 5.7
定义 ∧r := lim←−

n

∧rn, ∀r ≥ 0，∧ :=
⊕

r≥0 ∧r。由定义，∧r 中的元素形如 f = (fn)n≥0，其中

fn ∈ ∧rn满足 fn+1

∣∣
xn+1=0

= fn。∧为对称函数环。

由于当 r ≤ n时 ∧rn+1 7→ ∧rn为同构，故此时投影 ρrn : ∧r 7→ ∧rn, f 7→ fn为同构。

定义 5.8
令 mλ := (ρrn)

−1(mλ(x1, · · · , xn)) ∈ ∧r，其中 |λ| = r，mλ 称作对称单项式 (monomial
symmetric functions)。

命题 5.3

•
{
mλ

∣∣∣ |λ| = r
}
为 ∧r 的 Z−基。

• {mλ}是 ∧的 Z−基。

定义 5.9 (初等对称多项式)

• ∀r ∈ Z≥0，令

er := m(1r) =
∑

i1<···<ir

xi1 · · ·xir , r0 := 1

• ∀λ ∈ P，定义
eλ := eλ1

· eλ2
· · ·
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命题 5.4
•

E(t) :=
∑
r≥0

ert
r =

∏
i≥1

(1 + xit)

•
{
eλ

∣∣∣λ ∈ P}是 ∧的 Z−基。

证明. (1)是显然的。

(2)提示：证明

eλ′ = mλ +
∑
µ◁λ

aλ,µmµ�aλ,µ ∈ Z≥0

于是 ∧ = Z[e1, e2, · · · ]且 {e1, e2, · · · }在 Z上线性独立。

定义 5.10 (完全对称多项式)

• ∀r ∈ Z≥0，令

hr := m(1r) =
∑

i1≤···≤ir

xi1 · · ·xir , h0 := 1

• ∀λ ∈ P，定义
hλ := hλ1

· hλ2
· · ·

定义 5.11
对 ∧ = Z[e1, e2, · · · ]，令 ω : ∧ → ∧, er 7→ hr 为环同态。

命题 5.5
•

H(t) :=
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)−1

•
n∑
r=0

(−1)rerhn−r = 0, ∀n ≥ 1

•
{
hλ

∣∣∣λ ∈ P}是 ∧的 Z−基。

证明. (1)：由 1
1−xit

=
∑

n≥0 x
n
i t
n即得。

(2)：由 E(−t)H(t) = 1即得。

(3)：由 (2)知 ω(hr) = er，于是 ω2 = 1，即 ω是 ∧上的对合元，结合 ω(er) = hr即证。
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定义 5.12 (等幂和)

• ∀r ≥ 1，令

Pr := m(r) =
∑
i

xri

• ∀λ ∈ P，定义
Pλ := Pλ1

· Pλ2
· · ·

命题 5.6
•

P (t) :=
∑
r≥1

Pr · tr−1 =
∑
i

xi
1− xit

•
{
Pλ

∣∣∣λ ∈ P}是 ∧Q := Q⊗Z ∧的 Q−基。

•
ω(Pr) = (−1)r−1Pr, ω(Pλ) = (−1)|λ|−l(λ)Pλ

• 对 λ = (1m12m2 · · · )，定义 zλ =
∏
r≥1(r

mr ·mr!)，则

hn =
∑
|λ|=n

z−1
λ · Pλ

证明. (1)：显然。

(2)：回忆 H(t) =
∏
i≥1

1
1−xit

，故 P (t) = H′(t)
H(t)
，于是 H ′(t) = P (t)H(t)，此即 nhn =∑n

r=1 Prhn−r，故 hn ∈ Q[P1, · · · , Pn], Pn ∈ Z[h1, · · · , hn]，故 Q[P1, · · · , Pn] = Q[h1, · · · , hn]，
于是 ∧Q = Q[P1, P2, · · · ]且 ∧rQ = SpanQ

{
Pλ

∣∣∣ |λ| = r
}
= SpanQ

{
hλ

∣∣∣ |λ| = r
}
，由于 dim∧rQ ={

λ
∣∣∣ |λ| = r

}
，故

{
Pλ

∣∣∣λ ∈ P}是 ∧Q的 Q−基。

(3)：回忆 E(t) =
∏
i≥1(1 + xit)，故 P (−t) =

∑
i

xi

1+xit
= E′(t)

E(t)
，结合 P (t) = H′(t)

H(t)
与

ω(er) = hr 知 ω(P (−t)) = P (t)，即 ω(Pr) = (−1)r−1Pr。

(4)：P (t) = d
dt(logH(t))，故

H(t) = exp(
∑
r≥1

Prt
r

r
) =

∏
r≥1

exp(
Prt

r

r
) =

∏
r≥1

(
∑
mr≥0

1

mr!
(
Prt

r
)mr)

对应系数即证。

定义 5.13 (标量乘法)

设 x = (x1, x2, · · · ), y = (y1, y2, · · · )为两个独立变量列。∀f ∈ ∧，记 f(x), f(y), f(xy)为对应

的对称函数。
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命题 5.7

Pn(xy) =
∑
i,j

(xiyj)
n = Pn(x)Pn(y)

进一步有 Pλ(xy) = Pλ(x)Pλ(y)

定义 5.14 ∏
(x, y) :=

∏
i,j

(1− xiyj)−1

引理 5.1 ∏
(x, y) =

∑
λ

z−1
λ Pλ(x)Pλ(y) =

∑
λ

hλ(x)mλ(y) =
∑
λ

mλ(x)hλ(y)

证明. 由于
∑

r≥0 hrt
r =

∏
i≥1(1− xit)−1，故∏

(x, y) =
∑
n≥0

hn(xy) =
∑
λ

z−1
λ Pλ(xy) =

∑
λ

z−1
λ Pλ(x)Pλ(y)5

另一方面我们有∏
(x, y) =

∏
j

H(yj) =
∏
j

(
∑
αj≥0

hαj
(x)y

αj

j ) =
∑
λ

hλ(x)mλ(y) =
∑
λ

mλ(x)hλ(y)

定义 5.15
定义 〈−,−〉 : ∧ × ∧ → Z满足 〈hλ,mµ〉 = δλµ。

引理 5.2
∀n ≥ 0，{uλ} , {vλ}是 ∧nQ的 Q−基，则

〈uλ, vµ〉 = δλµ ⇐⇒
∑
λ

uλ(x)vλ(y) =
∏

(x, y)

证明. 设 uλ =
∑

ρ aλ,ρhρ, vµ =
∑

σ bµ,σmσ，则

〈uλ, vµ〉 = δλ,µ ⇐⇒
∑
ρ

aλ,ρbµ,ρ = δλ,µ

∑
uλ(x)vλ(y) =

∏
(x, y) =

∑
hρ(x)mρ(y)⇐⇒

∑
λ

aλ,ρbλ,σ = δρ,σ
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推论 5.1
•

〈Pλ, Pµ〉 = δλµzλ

于是 〈−,−〉是对称的且正定。

• ω是等距同构，即 ∀f, g ∈ ∧，有

〈ωf, ωg〉 = 〈f, g〉

证明. (1)：由
∏
(x, y) =

∑
z−1
λ Pλ(x)Pλ(y)与引理 4.7即证。

(2)：由 (1)与 ω(Pr) = (−1)r−1Pr 即证。

定义 5.16 (Schur多项式)

• ∀α = (α1, α2, · · · ) ∈ Zn≥0，令

aα := det(xαj

i )1≤i,j≤n =
∑
σ∈Sn

ε(σ) · σ(xα)

其中 ε(σ) = sgn(σ), xα = xα1
1 · · ·xαn

n

• 对 λ = (λ1, · · · , λn) ∈ P，定义 Schur多项式

Sλ(x1, · · · , xn) = aλ+δ/aδ

其中 δ = (n− 1, n− 2, · · · , 2, 1, 0)。

由 Vandermonde行列式知 aδ =
∏
i<j(xi − xj)。

aλ+δ 被 aδ 整除，于是 Sλ ∈ ∧|λ|
n ，进一步有存在 Schur多项式 Sλ ∈ ∧使得 Sλ

∣∣
xn+1=xn+2=···=0

=

Sλ(x1, · · · , xn)对任意 n ≥ l(λ)成立。
Sλ(x1, · · · , xn) = aλ+δ/aδ对 λ = (λ1, · · · , λn) ∈ Zn≥0也适用，这是因为 aλ+δ = ε(σ)aσ(λ+δ)，且

Sλ = 0当且仅当 λ+ δ有两个相等的项。

命题 5.8
对任意 λ ∈ P，存在Kλ,µ ∈ Z满足

Sλ = mλ +
∑
µ◁λ

Kλ,µmµ

于是
{
Sλ

∣∣∣λ ∈ P}是 ∧的 Z−基。这里的Kλ,µ ∈ Z≥0称作 Kostka数。

证明. 考虑 n个变量的情形，n ≥ |λ|。

mλ · aδ =
∑

µ为λ的任一排列
σ∈Sn

ε(σ)xµ+σ(δ) =
∑
µ,σ

ε(σ)xσ(µ+δ) =
∑
µ

aµ+δ
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这意味着

mλ =
∑

µ为λ的任一排列

xµ =
∑
µ

xσ(µ), ∀σ ∈ Sn

故

mλ =
∑

µ为λ的任一排列

Sµ ∈ ∧n

对 n ≥ |λ|成立，故在 ∧中同样成立。由上文知要么 Sµ = 0，要么 sµ = ε(σ) · sv，其中 v ∈ P
且 v + δ = σ(µ+ δ)对任意 σ ∈ Sn。由于 µ是 λ的任一排列，故 v ⊴ λ，因此

mλ = Sλ +
∑
v◁λ

aλ,vSv

定理 5.1
对任意 λ, µ ∈ P，有

〈Sλ, Sµ〉 = δλ,µ

证明. 只需证 ∑
λ

Sλ(x)Sλ(y) =
∏

(x, y)

考虑 Cauchy行列式我们有

det
(

1

xi + yj

)
1≤i,j≤n

=
aδ(x)aδ(y)∏

1≤i,j≤n(xi + yj)

在上式中用 −x−1
i 替换掉 xi得

det
(

1

1− xiyj

)
1≤i,j≤n

= aδ(x)aδ(y)
∏

(x, y)

另一方面我们有

det
(

1

1− xiyj

)
1≤i,j≤n

= det

(∑
α≥0

x
αj

i y
αj

j

)
=

∑
α=(α1,··· ,αn)∈Zn

≥0

aα(x) · yα

=
∑
λ∈P
l(λ)≤n

∑
α∈σ(λ+δ)
σ∈Sn

ε(σ) · aλ+δ(x) · σ(yλ+δ)

=
∑
λ∈P
l(λ)≤n

aλ+δ(x)
∑
σ∈Sn

ε(σ) · σ(yλ+δ)

=
∑
λ∈P
l(λ)≤n

aλ+δ(x)aλ+δ(y)
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故 ∏
(x, y) =

∑
λ∈P,l(λ)≤n

Sλ(x)Sλ(y)

令 n→∞即证。

命题 5.9 (Jacobi-Trudy等式/Giambelli公式)

• 对 ∀λ ∈ P, l(λ) ≤ n，有
Sλ = det(hλi−i+j)1≤i,j≤n

这里约定对 r < 0，hr = 0。

• 对 ∀λ ∈ P, l(λ′) ≤ m，有
Sλ = det(eλ′

i−i+j)1≤i,j≤m

证明. (1)：对 x = (x1, · · · , xn), y = (y1, · · · , yn)，回忆我们有

H(t) =
∑
r≥0

hr(x)t
r =

∏
i

1

1− xit

带入 ∏
(x, y) =

∏
i,j

1

1− xiyj
=

n∏
i=1

H (yj)

我们有： ∏
(x, y) · aδ (y) = det

(
yn−ji ·H (yi)

)
= det

∑
αj≥0

hαj
(x) y

n−j+αj

i


=

∑
α=(α1,··· ,αn)∈Zn

≥0

hα (x) · aα+δ (y)

对于 λ ∈ P，l(λ) ≤ n，
∏
(x, y) · aδ(y)中 aλ+δ(y)的系数为∑

σ∈Sn

sgn(σ) · hσ(λ+δ)−δ = det(hλi−i+j)1≤i,j≤n

而 ∏
(x, y)aδ(y) =

∑
µ∈P,l(µ)≤n

Sµ(x)Sµ(y)aδ(y) =
∑

µ∈P,l(µ)≤n

Sµ(x)aµ+δ(y)

其中 aλ+δ(y)的系数为 Sλ(x)，由此即证。

(2)：先证明如下引理
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引理 5.3
设 λ = (λ1, . . . , λn)和 µ = (µ1, . . . , µm) = λ（蕴含 λ1 = m,µ1 = n），则集合：

{λi + n+ 1− i | 1 ≤ i ≤ n} 和 {n+ j − µj | 1 ≤ j ≤ m}

构成集合 {1, 2, · · · , n+m}的一个不交并。

证明. 画出 Young表的对角线即证。

设 A,B ∈ Matr(C)，且 A · B = c · Ir=。令 (s, s′)和 (t, t′)为 (1, 2, · · · , n)的置换，满足
|s| = |t| = k。定义 AS,T = det

(
asi,tj

)
i,j
。类似地定义 BT ′,S′，则有：

cr−kAS,T = σ · det(A) ·BT ′,S′

其中 σ是两个置换的 sgn乘积。这是因为考虑三个置换矩阵 P,Q,满足

PAQ =

(
A1 A2

A3 A4

)
, detA1 = AS,T

Q−1BP−1 =

(
B1 B2

B3 B4

)
, BT ′,S′ = detB4

(
A1 A2

A3 A4

)(
Ik B2

0 B4

)
=

(
A1 0

A3 cIr−k

)

对上述等式两边取行列式即得。

需证明：

Sn = det
(
eλ′

i−i+j
)
1≤i,j≤m

定义下三角矩阵H = (hi−j)1≤i,j≤N 和E = ((−1)i−jei−j)1≤i,j≤N，其中N = n+m，H,E

是上对角矩阵且对角线为 1。回忆我们有

n∑
r=0

(−1)rerhh−r = 0, ∀n ≥ 1

从而有：

H · E = IN

对以下序列应用引理：

S = (λ1 + n, · · · , λi + n+ 1− i, · · · , λn + 1)

T = (n, n− 1, · · · , n− j + 1, · · · , 1)

S′ = (n+ 1− µ1, · · · , n+ i− µi, · · · , n+m− µm)

T ′ = (n+ 1, · · · , n+ j, · · · , n+m)
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5.1 对称函数 5 Sn表示

则有：

HS,T = det (hλi−i+j) = Sλ

ET ′,S′ = det
(
(−1)i−j+µjeµj+i−j

)
1≤i,j≤m

= (−1)
∑

(µj−j)+
∑
i det

(
eµj+i−j

)
1≤i,j≤m

= (−1)|λ| det(eµi+j−i)1≤i,j≤m

推论 5.2

ω(Sλ) = Sλ′

考虑 Sλ ·Sµ =
∑

ν c
ν
λµSν，c

ν
λµ ∈ Z称为 Littlewood-Richardson常数。我们之后会证明 cνλµ ∈ Z≥0。

令 µ = (r)，则 Sµ = hr，我们有如下公式：

命题 5.10 (Pieri公式)

Sλ · hr =
∑
λ

Sλ

这里求和遍历满足 λ \ µ是水平 r−条 (horizontal r-strip)的分拆 λ。即 λ的 Young图包含了 µ

的 Young表且仅相差 r个方格，且这 r个方格两两均不同列，即 λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥
λl ≥ µl ≥ 0, |λ| = |µ|+ r。

推论 5.3
设 Kλ,µ 为满足以下条件的填法数目：用 µ1 个 1，µ2 个 2，· · ·，µl 个 l填充 Young表 Y (λ)

的方框，使得每行的数字非递减且每列的数字严格递增。

注：此类填法被称为分拆 λ上类型为 µ的半标准 Young表。

命题 5.11

• Kλ,µ ∈ Z≥0

• Kλ,λ = 1

• Kλ,µ 6= 0 =⇒ µ ⊴ λ

• Kλ,(1n) = #
{
Y (λ)的标准 Young表

}
。即将 {1, 2, · · · , n}填入 Y (λ)满足每行每列的数

字严格递增的填法数。

证明.
hµ =

∑
λ

Kλ,µSλ = hµ1
· · ·hµl

= S(µ1)hµ2
· · ·hµl

再用

Sµ · hr =
∑
λ

λ−µ为水平r−条

Sλ
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5.2 Sn表示的分类定理 5 Sn表示

5.2 Sn表示的分类定理

定义 5.17
设 λ ∈ P (n)是一个 n的分划。Yλ是其Young表，标准填充Young表 Tλ为将 {1, 2, · · · , n}填入
Y (λ)满足每行每列的数字严格递增的填法。对这个标准填充 Tλ定义列子群 (row subgroup)

Pλ :=
{
g ∈ Sn

∣∣∣i与g(i)在同一行, ∀1 ≤ i ≤ n}
行子群 (column subgroup)

Qλ :=
{
g ∈ Sn

∣∣∣i与g(i)在同一列, ∀1 ≤ i ≤ n}
注： Pλ ∩Qλ = {1}。

定义 5.18
定义 Young投影子 (projectors)，

aλ :=
∑
g∈Pλ

g, bλ :=
∑
g∈Qλ

ε(g) · g, cλ := aλbλ

定理 5.2
Vλ := C[Sn] · cλ在左乘运算下为 Sn的不可约表示。任意 Sn的不可约表示同构于某个 Vλ。

注：Vλ称为 Specht模。

推论 5.4
任意 Sn的不可约表示可以由有理数构成的矩阵集合给出。

5.3 对称群 Sn的表示的分类定理的证明

引理 5.4
存在线性函数 lλ : C[Sn]→ C满足对任意 x ∈ C[Sn]，有

aλ · x · bλ = lλ(x) · cλ

证明. 若 g ∈ PλQλ，则 g可唯一表示为 pq（其中 p ∈ Pλ，q ∈ Qλ），故 aλgbλ = (−1)qcλ。因
此，只需证明：若置换 g /∈ PλQλ，则 aλgbλ = 0。

要证明这一点，只需找到一个对换 t满足 t ∈ Pλ且 g−1tg ∈ Qλ；此时

aλgbλ = aλtgbλ = aλg · (g−1tg) · bλ = −aλgbλ,
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5.4 诱导表示 5 Sn表示

故 aλgbλ = 0。换言之，我们需要找到两个元素 i, j，它们在 T = Tλ的同一行中，且在 T ′ = gT

的同一列中（其中 gT 是与 T 形状相同的 Young表，由置换 g置换 T 的元素得到）。因此，只

需证明：若不存在这样的元素对，则 g ∈ PλQλ，即存在 p ∈ Pλ，q′ ∈ Q′
λ := gQλg

−1 使得

pT = q′T ′（此时 g = pq−1，且 q = g−1q′g ∈ Qλ）。

T 第一行中的任意两个元素在 T ′中必处于不同列，因此存在 q′1 ∈ Q′
λ将这些元素全部移

到第一行。于是存在 p1 ∈ Pλ使得 p1T 与 q′1T
′的第一行相同。

对第二行执行相同步骤，找到元素 p2, q
′
2使得 p2p1T 与 q′2q

′
1T

′的前两行相同。依此类推，

可构造出所需的元素 p, q′。得证。

定义 5.19 (Lexicographic序)

对 λ, µ ∈ P (n)，定义 λ > µ当且仅当 λi − µi的第一个非零元是正的。

引理 5.5
若 λ > µ，则

aλC[Sn]bµ = 0

证明. 与前一个引理类似，只需证明：对任意 g ∈ Sn，存在对换 t ∈ Pλ使得 g−1tg ∈ Qµ。

设 T = Tλ且 T ′ = gTµ。我们断言存在两个整数，它们既在 T 的同一行中，又在 T ′的同

一列中。事实上，若 λ1 > µ1，由抽屉原理（仅看第一行即得）可知这一点显然成立。反之，

若 λ1 = µ1，则如前一个引理的证明，可找到元素 p1 ∈ Pλ、q′1 ∈ gQµg
−1，使得 p1T 与 q′1T

′

的第一行相同；对第二行重复该论证，依此类推。最终，在完成 i− 1步后，必有 λi > µi，这

意味着第一个表格第 i行中存在两个元素在第二个表格的同一列中，得证。

引理 5.6

• 对任意 λ ∈ P (n)，Vλ是 Sn的不可约表示。

• 对任意 λ 6= µ ∈ P (n)，则 Vλ ≇ Vµ。

推论 5.5

c2λ =
n!

dimVλ
· cλ

证明. 引理 5.4表明 c2λ与 cλ成比例。此外，易见 cλ在正则表示中的迹为 n!（因 cλ中单位元

的系数为 1）。由此可得所述结论。

5.4 诱导表示

回忆 ∀λ ∈ P (n), Pλ = Sλ1
× Sλ2

× · · · × Sλ2
⊆ Sn
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5.4 诱导表示 5 Sn表示

定义 5.20

Mλ := IndSn

Pλ
(trival) = IndSn

Pλ
C

注：回忆 an =
∑

g∈Pλ
g，故Mλ = C[Sn]⊗C[Pλ] C ∼= C[Sn]aλ

引理 5.7
设 A为含幺代数，e ∈ A为一幂等元，即 e2 = e。则对任意 A−模M，有

HomA(Ae,M) ∼= eM

证明. 任意 f ∈ HomA(Ae,M)由 f(e) = f(e2) = ef(e) ∈ eM 唯一确定。

又注意到 1
|Pλ|

∑
g∈Pλ

g = 1
|Pλ|aλ ∈ C[Sn]是幂等元，故：

命题 5.12
若 µ < λ，则 HomC[Sn](Mλ, Vµ) = 0，dim HomC[Sn](Mλ, Vλ) = 1。于是Mλ =

⊕
µ≥λ kµ,λVµ，

其中 kµ,λ ∈ Z≥0, kλ,λ = 1。

注：回忆 sλ = mλ +
∑

µ◁λKλ,µmµ ∈ ∧，我们将会证明 kµ,λ = Kµ,λ。

证明. 由引理，

HomC[Sn](Mλ, Vµ) = aλC[Sn]aµbµ =

0 , λ > µ

C · cλ , λ = µ

最后一个等号由引理 5.4与引理 5.5给出。

定义 5.21
对 µ = (1m12m2 · · · ) ∈ P (n)，设 Cµ ⊂ Sn为有mi个长度为 i的循环的的共轭类。对任意 Sn

的表示 V，χV (Cµ) := χV (g)，其中 g ∈ Cµ。

回忆 Pµ(x) = Pµ1
· Pµ2

· · · 为对称等幂和函数。对任意多项式 f 与 α = (α1, · · · , αl) ∈ Zl≥0，记

[xα](f)为 f 中 xα的系数。

定理 5.3
表示Mλ的特征在共轭类 Cµ上取值为

χMλ
(Cµ) = [xλ](Pµ)
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5.5 表示环和对称函数 5 Sn表示

推论 5.6
我们有

Pµ =
∑
λ

χMλ
(Cµ) ·mλ, hλ =

∑
µ

1

zµ
χMλ

(Cµ) · Pµ

其中 µ = (1m12m2 · · · ), zµ =
∏
r≥1(r

mr ·mr!) = #ZSn
(g), g ∈ Cµ

5.5 表示环和对称函数

定义 5.22
Rn := Sn的不可约表示的同构类上的自由阿贝尔群。

注：Sn 的表示 V 给出了 Rn 上一个元素 [V ]，等价地，Rn = Sn 的表示的 Grothendieck 群
:=
{
同构类[V ]

}
/ {[V ⊕W ] = [V ]⊕ [W ]}

定义 5.23

R :=
⊕
n≥0

Rn

其中R0 = Z，伴有Rn×Rm → Rn+m, [V ]·[W ] = [IndSn+m

Sn×Sm
V ⊗W ]。这里Sn = {1, 2, · · · , n}的

置换⊆ Sn+m，Sm = {n+ 1, · · · , n+m}的置换⊆ Sn+m，Sn×Sm ↷ V ⊗W 由 (σ×τ)(v⊗w) =
σv ⊗ τw给出。

容易验证 (R, ◦)为有结合律交换律的含幺分次环。

定义 5.24

〈−,−〉 : R×R→ Z

([V ], [W ]) 7→

 1
n!

∑
g∈Sn

χV (g) · χW (g) , [V ], [W ] ∈ Rn

0 , otherwise

注：由于 Sn的任意不可约表示 Vλ都有 χVλ
(g) ∈ R，故

([V ], [W ]) =
1

n!

∑
g∈Sn

χV (g) · χW (g)

(|zµ| · |Cµ| = |Sn|) =
∑

µ∈P (n)

1

zµ
χV (Cµ)χW (Cµ)

定义 5.25
定义可加同态

ϕ : ∧ → R

hλ 7→ [Mλ]
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5.5 表示环和对称函数 5 Sn表示

定理 5.4

• ϕ是环同态，且 ϕ是两者的等距变换。

• ϕ(sλ) = Vλ，其中 sλ是 Schur多项式。

证明. (1)：回忆 Λ = Z[h1, h2, . . . ]，{hλ | λ ∈ P}为 Λ的 Z-基。ϕ(hn) = M(n) = Cn 为 Sn

的平凡表示。于是，要证 ϕ是环同态，只需证 ϕ(hλ) = ϕ(hλ1
· · ·hλl

) = ϕ(hλ1
) · · ·ϕ(hλl

)。即

Mλ
∼= Cλ1

◦ Cλ2
◦ · · · ◦ Cλl

，其中 λ = (λ1 ≥ · · · ≥ λl > 0)。

由定义

Cλ1
◦ Cλ2

= IndC[Sλ1+λ2
]

C[Sλ1
×Sλ2

]C

Cλ1
◦ Cλ2

◦ Cλ3
= IndC[Sλ1+λ2+λ3

]

C[Sλ1+λ2
×Sλ3

]

(
IndC[Sλ1+λ2

]

C[Sλ1
×Sλ2

]C
)

= IndC[Sλ1+λ2+λ3
]

C[Sλ1+λ2
×Sλ3

]

(
IndC[Sλ1+λ2

×Sλ3
]

C[Sλ1
×Sλ2

×Sλ3
]C
)

= IndC[Sλ1+λ2+λ3
]

C[Sλ1
×Sλ2

×Sλ3
]C

· · ·

Cλ1
◦ Cλ2

◦ · · · ◦ Cλl
∼=Mλ

故 ϕ是环同态。由于 [Mλ] =
∑

µ≥λ kµ,λ[Vµ], kλ,λ = 1，故
{
[Mλ]

∣∣∣λ ∈ P}为 R的基。故 ϕ

是 Z−代数的同构。
对另一论断，我们构造逆映射

ψ : R→ ∧⊗Q

回忆我们有

hλ =
∑
µ

1

zµ
χMλ

(Cµ)Pµ

于是，定义

ψ([V ]) =
∑
µ

1

zµ
χV (Cµ)Pµ

则 ψ ◦ ϕ为 ∧到 ∧⊗Q的嵌入。但 ϕ是同构，故 ψ是逆同构。要证明 ϕ是等距变换，只需证

ψ是等距变换。

〈ψ([V ]), ψ([W ])〉 =
∑
λ,µ

1

zλ · zµ
χV (Cλ)χW (Cµ) 〈Pλ, Pµ〉

=
∑
λ

1

zλ
χV (Cλ)χW (Cµ)

= ([V ], [W ])

(2)：回忆我们有

hλ = Sλ +
∑
v▷λ

Kvλsv

[Mλ] = [Vλ] +
∑
v>λ

kv,λ[Vv]
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5.5 表示环和对称函数 5 Sn表示

回忆 v . λ当且仅当 |v| = |λ| , v1 + · · ·+ vi ≥ λ1 + · · ·+ λi, ∀i。于是，v . λ =⇒ v > λ。故

ϕ(Sλ) = [Vλ] +
∑
v

mvλ[Vv]

其中mv,λ为整数，由 ϕ是等距变换知

1 +
∑
v

m2
v,λ = (ϕ(Sλ), ϕ(Sλ)) = (Sλ, Sλ) = 1

故 ϕ(Sλ) = [Vλ]。

推论 5.7
Kλ,µ = kλ,µ ∈ Z≥0

推论 5.8

Pµ =
∑
λ

χVλ
(Cµ) · sλ

或等价的，

sλ =
∑
µ

1

zµ
χVλ

(Cµ)Pµ

证明. 由 ψ([Vλ]) = Sλ即得。

推论 5.9
回忆 Littlewood-Richardson常数定义为

SλSµ =
∑
v

νcνλµSν

我们有 cνλµ ∈ Z≥0

证明. 由前述命题知

IndS|λ|+|µ|
S|λ|×S|µ|

(Vλ × Vµ) =
⊕
v

cvλµVv =⇒ cvλ,µ ∈ Z≥0
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5.6 An的表示 5 Sn表示

定义 5.26
对 Sn的表示 V 定义其 Frobenius特征为

FV (x) :=
∑
µ

1

zµ
χV (cµ) · Pµ ∈ ∧Q

则我们已有

FMλ
(x) = hλ(x) FVλ

(x) = sλ(x)

命题 5.13
对 λ ∈ P (n), N ≥ l(λ), δ = (N − 1, N − 2, · · · , 1, 0)，则

χVλ
(cµ) = [

N∏
i=1

xλi+N−i
i ](

∏
1≤i<j≤N

(xi − xj) · · ·Pµ(x1, · · · , xN ))

定义 5.27
对 Young图 Yλ中的格 (i, j)，定义

h(i, j) := #
{
(i′, j′) ∈ Yλ

∣∣∣i′ ≥ i, j′ = j 或i′ = i, j′ ≥ j
}

推论 5.10 (hook length fomula)

dimVλ =
n!∏

(i,j)∈Yλ
h(i, j)

回忆 ∧上的对合 ω，ω(eλ) = fλ, ω(Pλ) = (−1)|λ|−l(λ)Pλ。

定义 5.28
定义加法对合

ω : Rn → Rn

[v] 7→ [v ⊗ sign]

命题 5.14
ψ : R→ ∧与 ω可交换。

推论 5.11

Vλ ⊗ sign ∼= Vλ′

5.6 An的表示

交错群 An =
{
偶置换

}
/ Sn，指数为 2。
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5.7 Schur-Weyl对偶 5 Sn表示

引理 5.8

IndSn

An
C ∼= C⊕ sign

定理 5.5
λ ∈ P (n),Vλ为 Sn的 Specht模。则

• 若 λ 6= λ′则 ResSn

An
Vλ是不可约的。

• 若 λ = λ′ 则 ResSn

An
Vλ ∼= Wλ ⊕W ′

λ，其中Wλ,W
′
λ 是不同构的 An 的不可约表示，满足

对任意 Sn中的奇置换 w ∈ Sn，有 w(Wλ) =W ′
λ。

• An的任意不可约复表示均出现在某个 Vλ中，且 λ在取转置的意义下唯一确定。

5.7 Schur-Weyl对偶

先来考虑 gl(V )的情形。

定理 5.6 (双中心化子定理 (double centralizer theorem))

设 E 是 k 上的有限维向量空间。A,B ⊆ End(E)为子代数，且 A是半单的，B = EndA(E)，

则

• A = EndB(E)。

• B 是半单的。

• 作为 A⊗B 的表示
E =

⊕
i

Vi ⊕Wi

其中 {Vi}为所有 A的不可约表示 := Irr(A)，{Wi}为所有 B 的不可约表示 := Irr(B)。

特别的，存在 Irr(A)与 Irr(B)间的自然双射。

将该定理应用在 E = V ⊗n 上，其中 V 是 C上的有限维向量空间。Sn 在 E 上作用为自然的交

换。定义 A := Im(C[Sn]→ End(E))。回忆 gl(V ) :=李代数(End(V ), [−,−])，其中 [a, b] = ab− ba。

定理 5.7
代数 B = EndA(E)是泛包络代数 U(gl(V ))在其对 E = V ⊗n的自然作用下的像。即 B 由

∆n(n) := b⊗ 1⊗ · · · ⊗ 1 + 1⊗ b⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗ 1⊗ b

生成，其中 b ∈ gl(V )。
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5.7 Schur-Weyl对偶 5 Sn表示

引理 5.9
chark = 0。

• 任意 k上有限维向量空间 U，SnU 由 u⊗ · · · ⊗ u, u ∈ U 生成。

• 任意 k上代数 A，SnA由 ∆n(a), a ∈ A生成。

回忆我们有若 A = Im(C[Sn]→ End(V ⊗n))且 C[Sn]半单，则有 A是半单的。结合双中心化子

定理我们有：

定理 5.8 (Schur-Weyl对偶)

• C[Sn]的像 A和 U(gl(V ))的像 B 在 End(V ⊗n)中互为中心化子。

• A,B 均为半单的。特别的，V ⊗n是半单的 gl(V )−模。

• 作为 A⊗B−模，
V ⊗n =

⊕
λ∈P (n)

Vλ ⊗ Lλ

其中 Vλ是 Sn的 Specht模，Lλ是 gl(V )的不相交的不可约表示或 0。

Problem 5.1

• 当 λ = (n)时，V(n) = Sn的平凡表示。Lλ = HomSn
(C, V ⊗n) = (V ⊗n)Sn = SnV

• 当 λ = (1n)时，V(1n) = Sn的符号表示。Lλ = HomSn
(sign, V ⊗n) = ∧nV

下面我们来考虑Lλ的特征。令N = dimVλ，令 x1, · · · , xN 为 g ∈ GL(V )的特征根，我们希望计

算特征 χLλ
(g)。由 Schur-Weyl知 V ⊗n =

⊕
λ∈P (n) Vλ⊗Lλ，取 s ∈ Sn，设 s ∈ cµ = µ = (1m12m2 · · · )

的共轭类。

引理 5.10

TrV⊗n(g
⊗ns) =

∏
m

Pm(x1, · · · , xm)im

证明. 设 {e1, · · · , eN}是 V 的标准基，gei =
∑

j gjiej。设 (12 · · ·m) ∈ Sn是长为m的循环，

g⊗m(12 · · ·m)(ei1 ⊗ · · · ⊗ eim) = geim ⊗ gei1 ⊗ · · · ⊗ geim−1

故

TrV⊗m(g
⊗m(j1 · · · jm)) =

∑
1≤i1,··· ,im≤N

gimi1gi1i2 · · · gim−1im

= Tr(gm) = (xm1 + · · ·+ xmN ) = Pm(x1, · · · , xN )
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5.7 Schur-Weyl对偶 5 Sn表示

定理 5.9 (Weyl特征公式)

Lλ = 0当且仅当 N < l(λ)。若 N ≥ l(λ)，则

χLλ
(g) = sλ(x1, · · · , xN )

推论 5.12

dimhλ =
∏

1≤i<j≤N

λi − λj + j − i
j − i

推论 5.13

Lλ+(1N )
∼= Lλ ⊗ ∧NV
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6 GL2(Fq)与 SL2(Fq)的表示

6 GL2(Fq)与 SL2(Fq)的表示

群 GL2(Fq)（即元素取自有限域 Fq的可逆 2× 2矩阵群，其中 q是素数的幂）及其子群 SL2(Fq)
（由行列式为 1的矩阵组成）构成了另一类重要的有限群。商群 PGL2(Fq) = GL2(Fq)/F∗

q 是有限射

影直线 P1(Fq)的自同构群。商群 PSL2(Fq) = SL2(Fq)/{±1}在 q 6= 2, 3时是单群。本节将概述这些

群的表示理论。

6.1 GL2(Fq)表示

我们从 G = GL2(Fq)开始。以下是几个关键子群：

G ⊃ B =

{(
a b

0 d

)}
⊃ N =

{(
1 b

0 1

)}
.

由于 G在射影直线 P1(Fq)上可传递地作用，且 B 是点 (1:0)的稳定子群，因此有：

|G| = |B| · |P1(Fq)| = (q − 1)2q(q + 1).

我们还需要对角子群：

D =

{(
a 0

0 d

)}
= F∗ × F∗,

这里记 F = Fq。设 F′ = Fq2 是 F的二次扩张，在同构意义下唯一。我们可以将 GL2(Fq)视为 F′

上所有可逆线性自同态的群。这使得一个大的循环子群K = (F′)∗在 G中显现。特别地，当 q为奇

数时，可以通过选择 F∗ 的生成元 ε及其在 F′ 中的平方根
√
ε来显式构造这个同构。此时，1和

√
ε

构成 F′作为 F上向量空间的基，因此可以建立以下对应关系：

K =

{(
x εy

y x

)}
∼= (F′)∗,

(
x εy

y x

)
7→ ζ = x+ y

√
ε;

K 是 G的一个循环子群，阶为 q2 − 1。我们通常使用这种对应关系，对于 q为偶数的情形，请

读者自行调整。

G中的共轭类很容易确定：

代表元 类中元素数量 类的数量

ax =

(
x 0

0 x

)
1 q − 1

bx =

(
x 1

0 x

)
q2 − 1 q − 1

cx,y =

(
x 0

0 y

)
, x 6= y q2 + q (q−1)(q−2)

2

dx,y =

(
x εy

y x

)
, y 6= 0 q2 − q q(q−1)

2

这里 cx,y 和 cy,x通过

(
0 1

−1 0

)
共轭，而 dx,y 和 dx,−y 通过任何

(
a −εc
c −a

)
共轭。为了计算 bx
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6.1 GL2(Fq)表示 6 GL2(Fq)与 SL2(Fq)的表示

共轭类中元素的数量，观察 G通过共轭作用在该类上的行为；稳定子群是

{(
a b

0 a

)}
，因此类中

元素的数量是该群在 G中的指数，即 q2 − 1。类似地，cx,y 的稳定子群是D，而 dx,y 的稳定子群是

K。通过考虑特征值和 Jordan标准形，可以验证这些类是不相交的。由于它们总共覆盖了 |G|个元
素，因此列表是完整的。

共有 q2 − 1个共轭类，因此我们需要找到相同数量的不可约表示。

首先考虑 G在 P1(F)上的置换表示，其维数为 q + 1。它包含平凡表示；设 V 是互补的 q维表

示。特征标 χ在四类共轭类上的取值为：

χ(ax) = q, χ(bx) = 0, χ(cx,y) = 1, χ(dx,y) = −1,

简记为：

V : q 0 1 − 1

由于 (χ, χ) = 1，V 是不可约的。对于 F ∗的每个特征标 α : F ∗ → C∗（共 q − 1个），我们有一

个一维表示 Uα，定义为 Uα(g) = α(det(g))。此外，还有表示 Vα = V ⊗Uα。这些表示的特征标值为：

Uα : α(x)2 α(x)2 α(x)α(y) α(x2 − εy2)

Vα : qα(x)2 0 α(x)α(y) − α(x2 − εy2)

注意到若将

(
x εy

y x

)
与 F ′中的 ζ = x+ y

√
ε等同，则：

x2 − εy2 = det

(
x εy

y x

)
= NormF ′/F (ζ) = ζ · ζq = ζq+1.

下一步是寻找从大子群诱导的表示。对于每对特征标 α, β，存在子群 B 的一个特征标：

B → B/N = D = F ∗ × F ∗ → C∗ × C∗ → C∗,

将

(
a b

0 d

)
映射为 α(a)β(d)。设Wα,β 是由此表示从 B诱导到G的表示，其维数为 [G : B] = q+1，

其特征标值为：

Wα,β : (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

由此可知Wα,β
∼=Wβ,α，Wα,α

∼= Uα⊕Vα，且当 α 6= β时，表示是不可约的。这给出了 1
2
(q−1)(q−2)

个额外的不可约表示，维数为 q + 1。

与共轭类的列表对比，还需找到 1
2
q(q − 1)个不可约特征标。一种自然的方法是从循环子群 K

诱导特征标。对于表示 ϕ : K = (F ′)∗ → C∗，诱导表示的特征标值为：

Ind(ϕ) : q(q − 1)ϕ(x) 0 0 ϕ(ζ) + ϕ(ζ)q

这里 ζ = x+y
√
ε ∈ K = (F ′)∗。注意到 Ind(ϕq) ∼= Ind(ϕ)，因此当 ϕq 6= ϕ时，Ind(ϕ)给出了 1

2
q(q−1)

个不同的表示。
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6.2 SL2(Fq)表示 6 GL2(Fq)与 SL2(Fq)的表示

然而，这些表示并非不可约：若 ϕq 6= ϕ，则 Ind(ϕ) 的特征标 χ 满足 (χ, χ) = q − 1；否则

(χ, χ) = q。我们需要进一步从这些诱导表示中提取不可约表示。

另一种尝试是通过已知表示的张量积寻找新表示。我们有 Vα ⊗ Uγ = Vαγ，以及Wα,β ⊗ Uγ ∼=
Wαγ,βγ，因此这种方法无法得到新的表示。但 Vα 和Wα,β 的张量积更具潜力。例如，V ⊗Wα,1 的

特征标值为：

V ⊗Wα,1 : q(q + 1)α(x) 0 α(x) + α(y) 0

通过计算特征标的内积，可以估计这些表示中包含多少不可约表示以及它们的共同部分。例如：

(χV ⊗Wα,1, χWα,1
) = 2,

(χInd(φ), χWα,1
) = 1 若ϕ|F∗ = α,

(χV ⊗Wα,1, χV ⊗Wα,1) = q + 3,

(χV ⊗Wα,1, χInd(φ)) = q 若ϕ|F∗ = α.

结合 (χInd(φ), χInd(φ)) = q − 1，可以推断 V ⊗Wα,1 和 Ind(ϕ)包含许多相同的表示。幸运的是，
Ind(ϕ)和Wα,1都应包含在 V ⊗Wα,1中。这一猜想容易验证：虚拟特征标

χφ = χV ⊗Wα,1 − χWα,1
− χInd(φ)

在四类共轭类上的取值为 (q−1)α(x),−α(x), 0和−(ϕ(ζ)+ϕ(ζ)q)。因此，(χφ, χφ) = 1，且 χφ(1) =

q − 1 > 0，故 χφ 实际上是 V ⊗Wα,1 的一个 q − 1维不可约子表示的特征标。我们将此表示记为

Xφ。这些表示（共
1
2
q(q− 1)个，且Xφ = Xφq）完成了 GL2(F )的不可约表示列表。其特征标表为：

1 q2 − 1 q2 + q q2 − q
GL2(Fp) ax bx cx,y dx,y = ζ

Uα α(x2) α(x2) α(xy) α(ζq)

Vα qα(x2) 0 α(xy) −α(ζq)
Wα,β (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xφ (q − 1)ϕ(x) −ϕ(x) 0 −(ϕ(ζ) + ϕ(ζq))

6.2 SL2(Fq)表示

接下来讨论行列式为 1的 2× 2矩阵子群 SL2(Fq)（q为奇数）。其共轭类、每类元素数量及类
的数量如下：
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6.2 SL2(Fq)表示 6 GL2(Fq)与 SL2(Fq)的表示

代表元 类中元素数量 类的数量

(1) e =

(
1 0

0 1

)
1 1

(2) −e =

(
−1 0

0 −1

)
1 1

(3)

(
1 1

0 1

)
q2−1

2
1

(4)

(
1 ε

0 1

)
q2−1

2
1

(5)

(
−1 1

0 −1

)
q2−1

2
1

(6)

(
−1 ε

0 −1

)
q2−1

2
1

(7)

(
x 0

0 x−1

)
, x 6= ±1 q(q + 1) q−3

2

(8)

(
x y

εy x

)
, y 6= 0 q(q − 1) q−1

2

验证过程与 GL2(Fq)类似。在 (7)中，

(
x 0

0 x−1

)
和

(
x−1 0

0 x

)
的类是相同的。在 (8)中，(x, y)

和 (x,−y)的类是相同的；更好的标记方式是使用循环群 C = {ζ ∈ (F′)∗ : ζq+1 = 1}中的元素 ζ，其

中 ±1未被使用，且 ζ 和 ζ−1的类是相同的。

共轭类的总数为 q + 4，因此需要找到 q + 4个不可约表示。我们首先通过限制 GL2(Fq)的表示
来获取部分表示：

• 所有 Uα限制为平凡表示 U。

• Vα的限制 V 是不可约的。

• Wα,1 的限制 Wα 在 α2 6= 1时是不可约的，且当 β = α或 β = α−1 时 Wα
∼= Wβ。这给出了

1
2
(q − 3)个 q + 1维不可约表示。

• 设 τ 是 F ∗ 的特征标且 τ 2 = 1，τ 6= 1。Wτ,1 的限制是两个不同的不可约表示W ′ 和W ′′ 的直

和。

• Xφ的限制仅依赖于 ϕ在子群 C 上的限制，且 ϕ和 ϕ−1决定相同的表示。若 ϕ2 6= 1，则表示

是不可约的。这给出了 1
2
(q − 1)个 q − 1维不可约表示。

• 设 ψ是 C 的特征标且 ψ2 = 1，ψ 6= 1。Xψ 的限制是两个不同的不可约表示X ′和X ′′的直和。

综上，我们得到了 q + 4个不同的不可约表示，因此这是一个完整的列表。为了完成特征标表，问

题转化为描述四个表示W ′,W ′′, X ′和 X ′′。已知所有表示的维数平方和为 q2 + 1，由此可以推断前

两个表示的维数为 1
2
(q + 1)，后两个为 1

2
(q − 1)。这与我们在指数为二的子群限制表示中观察到的

现象类似。尽管这里的指数更大，但我们可以通过寻找GL2(Fq)中一个包含 SL2(Fq)的指数为二的
子群 H，并分析这四个表示在 H 上的限制来解决问题。
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6.3 习题 6 GL2(Fq)与 SL2(Fq)的表示

对于 H，我们取 GL2(Fq)中行列式为平方数的矩阵。其共轭类的代表元与 GL2(Fq)相同（仅

包含行列式为平方数的代表元），但需要额外添加由元素

(
x ε

0 x

)
（x ∈ F∗）表示的类。这些类在

GL2(Fq)中与

(
x 1

0 x

)
共轭，但在H 中不共轭。这些是 q − 1个分裂共轭类。虽然可以利用前述方

法计算 H 的所有表示，但我们仅需部分信息。

注意到从G/H 的符号表示 U ′是 Uτ，因此有Wτ,1
∼=Wτ,1⊗U ′和Xψ

∼= Xψ⊗U ′；它们在H 上

的限制会分裂为两个共轭的不可约表示，且维数减半。这表明这些表示在从 H 限制到 SL2(Fq)时
仍保持不可约性，因此W ′和W ′′是维数为 1

2
(q+1)的共轭表示，而X ′和X ′′是维数为 1

2
(q− 1)的

共轭表示。此外，我们知道它们在所有非分裂共轭类上的特征标值分别是Wτ,1和Xψ特征标值的一

半。这些信息足以完成特征标表。唯一未被覆盖的特征标值如下：(
1 1

0 1

) (
1 ε

0 1

) (
−1 1

0 −1

) (
−1 ε

0 −1

)
W ′ s t s′ t′

W ′′ t s t′ s′

X ′ u v u′ v′

X ′′ v u v′ u′

前两行的确定方法如下：已知 s+t = χWτ,1

((
1 1

0 1

))
= 1。此外，由于

(
1 1

0 1

)−1

=

(
1 −1
0 1

)

在 q ≡ 1 mod 4时与

(
1 1

0 1

)
共轭，否则与

(
1 ε

0 1

)
共轭，且对于任何特征标有 χ(g−1) = χ(g)，因

此可以得出：若 q ≡ 1 mod 4，则 s和 t为实数；若 q ≡ 3 mod 4，则 s = t。此外，由于 −e在任何
不可约表示中作用为单位或负单位（根据 Schur引理），对于任何不可约特征标 χ，有：

χ(−g) = χ(g) · χ(1)/χ(−e).

由此得到关系 s′ = τ(−1)s和 t′ = τ(−1)t。最后，将方程 (χ, χ) = 1应用于W ′ 的特征标，可

以得到 st+ ts的表达式。解这些方程可得：

s, t =
1

2
± 1

2

√
ωq, u, v = −1

2
± 1

2

√
ωq,

其中 ω = τ(−1)，当 q ≡ 1 mod 4时为 1，当 q ≡ 3 mod 4时为 -1。至此，我们完成了特征标
表所需的全部计算。

6.3 习题

Problem 6.1
计算每个不可约表示在 V ⊗Wα,1和 Ind(ϕ)中的重数。

Problem 6.2
求 PGL2(F) = GL2(F)/F∗的特征标表。
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6.3 习题 6 GL2(Fq)与 SL2(Fq)的表示

Problem 6.3
通过 SL2(Fq)在 P1(Fq)上的作用，证明 SL2(F2) ∼= S3，PSL2(F3) ∼= A4，以及 SL2(F4) ∼= A5。

Problem 6.4
利用 SL2(Fq)的特征标表证明当 q为奇数且大于 3时，PSL2(Fq)是单群。

Problem 6.5
计算 PSL2(Fq)的特征标表。
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7 箭图表示

7 箭图表示

7.1 Gabriel定理

设 Γ是以 I = {1, 2, · · · , N}为顶点，E 为边的图。本节中约定 Γ是联通的，且不含自环。

定义 7.1
定义其伴随矩阵 (adjacency matrix) RΓ := (rij)，其中 rij 为 i与 j 的连边数。

定义 7.2
Γ称为 Dynkin图，若 AΓ := 2Id−RΓ是正定的。

定理 7.1
Γ是 Dynkin图当且仅当形如下述图之一：

• AN：
◦ ◦ · · · ◦ ◦

• DN (N ≥ 4)：
◦ ◦ · · · ◦ ◦

◦

• E6：
◦ ◦ ◦ ◦ ◦

◦

• E7：
◦ ◦ ◦ ◦ ◦ ◦

◦

• E8：
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

注：一个单边仿射 (simply laced affine) Dynkin图是一个连通且无自环的图，若 AΓ是半正定的。

它们形如：

• ÂN：
◦

◦ ◦ · · · ◦ ◦
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7.1 Gabriel定理 7 箭图表示

• D̂N：
◦ ◦

◦ ◦ · · · ◦ ◦

◦ ◦

• Ê6：
◦ ◦ ◦ ◦ ◦

◦

◦

• Ê7：
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

• Ê8：
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

回忆箭图 Q的表示为 V = ((Vi)i∈I , (xh)h∈E)，其中 h : h′ → h′′ 为 Q的边，xh : Vh′ → Vh′′ 为

线性映射。

定义 7.3
对任意 i ∈ I，如下定义表示 S(i)：取 xh = 0，

S(i)j =

C j = i

0 j 6= i

容易验证 S(i)是一个表示，且 i 6= j 时 Si ≇ Sj。

定理 7.2

设 Q无有向圈，则
{
S(i)

∣∣∣i ∈ I}为所有 Q的不可约表示。

证明. 令 V 为Q的表示，设 I ′ :=
{
i ∈ I

∣∣∣Vi 6= 0
}
，则存在 i ∈ I ′使得 ∀j ∈ I ′不存在边 i→ j，

于是 dimVi · S(i) ⊂ V。
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7.1 Gabriel定理 7 箭图表示

定义 7.4
对任意 Q的表示 V，定义其维数向量 (dimension vector)为

dimV := (dimV1, dimV2, · · · , VN ) ∈ ZI

定义 7.5
对任意 v ∈ ZI≥0，令

Rep(Q, v) :=
⊕
h∈E

HomC(Cvh′ ,Cvh′′ )

为由 v生成的 Q的表示空间。定义

GL(v) :=
∏
i

GL(vi)

自然作用于 Rep(Q, v)上。

则我们有 dim v的同构类一一对应于 Rep(Q, v)的 GL(v)−轨道。

定义 7.6
一个箭图 Q称为有限型 (finite type)，当且仅当其不可分解表示的同构类数目是有限的。

反例：Jordan箭图 Q = ◦ ，不可约表示为 (Cd, Jλ)，其中 Jλ =


λ 1

λ
. . .
. . . 1

λ

 , λ ∈ C

定理 7.3 (Gabriel)

连通箭图 Q是有限型当且仅当其对应的无向图 Γ是 Dynkin图。进一步我们有不可分解表示
与和 Γ对应的的正根一一对应。

idea. 设Q的任一表示 V 均为不可分解表示的直和。根据 GL(V )−作用，dim v的同构类一一

对应于 Rep(Q, v)的 GL(v)−轨道。
因此，若 Q是有限型，则 Rep(Q, v)上仅有有限个 GL(v)−轨道。进一步利用存在轨道

OV 满足：

dimOV = dim Rep(Q, v).

另一方面，OV = GL(V )/Stab(V )，且 Ck ⊆ Stab(v)可得：

dimOV = dim Rep(Q, v) ≤ dim GL(V )− 1

即 ∑
i∈I

v2i −
∑
h∈E

vh′vh′′ ≥ 1⇐⇒ vTApv ≥ 2, ∀v ∈ ZI≥0

这表明 Ap是正定矩阵。
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7.2 一些例子 7 箭图表示

另一个方向的证明我们将通过反射函子得到。

7.2 一些例子

我们给出如下记号：

1◦ 0◦ =
C◦ 0◦ 0◦ 1◦ =

0◦ C◦ 1◦ 1◦ =
C◦ C◦

∼=

令 Ind(Q) =
{
Q的不可分解的同构类

}
例 7.1

Q = A1 = ◦ ，Ind(Q) = {C}。

例 7.2

Q = A2 = ◦ ◦ ，注意到 V
A−→W = (kerA −→ 0)⊕ (V ′ ∼−−→ ImA)⊕ (0

0−→W ′)，其

中 V ′为 kerA在 V 的补空间，W ′为 ImA在W 的补空间，故 Ind(Q) = {1→ 0, 0→ 1, 1→ 1}
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7.3 根 7 箭图表示

例 7.3
A3有两种情况需要讨论

• ◦ ◦ ◦ V
A−−→W

B−−→ Y

我们有 kerA→ 0→ 0，0→ 0→ Y ′，这里 Y ′是 ImB 在 Y 的补空间。于是我们有

V
A
↪→W

B↠ Y

设 X := ker(B ◦A), V = X ⊕X ′,W = A(X)⊕W ′使得 A(X ′) ⊂W ′。则

V
A
↪→W

B↠ Y = (X
A
↪→ A(x)→ 0)⊕ (X ′ A

↪→W ′ B↠ Y )

前者 = dimX(1→ 1→ 0)，于是我们化归到了 V
A
↪→W

B↠ Y, ker(B ◦A) = 0的情形。

令 X = B ◦A(V ), Y = X ⊕X ′，令W ′为 X ′的原像 ⊂W。则W = A(V )⊕W ′且

V
A
↪→W

B↠ Y =
(
V

∼−→ A (V )
∼−→ X

)
⊕
(
0→W ′ B↠ X ′

)
后者由 0→ 1→ 1与 0→ 1→ 0构成。故

Ind(Q) =

1→ 0→ 0, 0→ 0→ 1, 1→ 1→ 0

1→ 1→ 1, 0→ 1→ 1, 0→ 1→ 0


• ◦ ◦ ◦ V

A−−→W
B←−− Y

同上，我们可以拿掉 kerA→ 0← 0与 0→ 0← kerB，得到

V
A
↪→W

B←↩ Y

设W ′ = V ∩ Y, V ′ =W ′ ∩ V, Y ′ =W ′ ∩ Y。则我们可以分离出

V ′ ∼−→W ′ ∼←− Y ′

于是我们归化到了 V
A
↪→W

B←↩ Y, V ∩ Y = 0的情形。令W = V ⊕ Y ⊕W ′，则

V
A
↪→W

B←↩ Y = (V
∼→ V ← 0)⊕ (0→W ′ ← 0)⊕ (0→ Y

∼← Y )

故

Ind(Q) =

1→ 0← 0, 0→ 0← 1, 1→ 1← 1

1→ 1← 0, 0→ 1← 0, 0→ 1← 1


7.3 根

从现在开始 Γ形如 An, Dn, E6, E7, E8中一者。RΓ = (rij)1≤i,j≤n为伴随矩阵。

在格点 Zn或 Rn上定义内积
B(x, y) = xTAΓy
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7.3 根 7 箭图表示

其中 AΓ := 2Id−RΓ为 Γ的 Cartan矩阵。

引理 7.1

• B 是正定的。

• ∀x ∈ Zn, B(x, x) ∈ 2Z。

证明. (1)：由于 Γ是 Dynkin图，故 B 正定。

(2)：由定义

B(x, x) = xTAΓx =
∑
i,j

xiaijxj = 2
∑
i

x2i +
∑
i,j,i ̸=j

xiaijxj = 2
∑
i

x2i + 2 ·
∑
i<j

aijxixj ∈ 2Z

定义 7.7
关于某个正定内积的根 (root)是 Zn中相对于该内积长度最短的非零向量。

故对内积 B，我们有 roots =
{
x ∈ Zn

∣∣∣B(x, x) = 2
}
，特别的 #roots< +∞。

定义 7.8
称 αi = (0, · · · , 0, 1, 0, · · · , 0)为单根 (simple root)。

引理 7.2
设 α为根，α =

∑
i kiαi，则所有的 ki均非正或均非负。

证明. 假设结论不成立，即存在某 ki > 0和某 kj < 0。不妨进一步假设在 i与 j 之间的所有

下标 s满足 ks = 0。将顶点 i, j 与图 Γ的顶点对应：

◦ i◦ i′◦ ◦
j
◦ ◦ ◦

◦

ϵ

令 ε为连接 i与其向 j 方向相邻顶点的边，i′为 ε的另一端点。通过移除边 ε将图 Γ分割

为子图 Γ1和 Γ2。由于 Γ是 Dynkin图（无环且无圈），Γ1与 Γ2均为连通子图且彼此不连通：

Γ1 : ◦ i◦ Γ2 : ◦ ◦
j
◦ ◦ ◦

◦

此时 i ∈ Γ1，j ∈ Γ2。定义：

β =
∑
m∈Γ1

kmαm, γ =
∑
m∈Γ2

kmαm,
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7.3 根 7 箭图表示

则有 α = β + γ。由于 ki > 0且 kj < 0，可知 β 6= 0，γ 6= 0，因此：

B(β, β) ≥ 2, B(γ, γ) ≥ 2.

进一步，由于 Γ1与 Γ2仅在边 ε处相连，其双线性形式满足：

B(β, γ) = −kiki′ .

由于 ki > 0且 ki′ ≤ 0（由 γ 的构造），可得 B(β, γ) ≥ 0。于是：

B(α, α) = B(β + γ, β + γ) = B(β, β)︸ ︷︷ ︸
≥2

+2B(β, γ)︸ ︷︷ ︸
≥0

+B(γ, γ)︸ ︷︷ ︸
≥2

≥ 4.

但这与 α是根矛盾。

定义 7.9
对根 α =

∑
kiαi，称 α是正 (负)根，若 ki均非负 (均非正)。

于是所有根要么是正根要么是负根。令 R+为所有正根构成的集合。
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7.3 根 7 箭图表示

例 7.4

• 设 Γ = AN−1。格 L = ZN−1可视为格 ZN 的子群，其定义为所有满足

N∑
i=1

xi = 0

的向量 (x1, . . . , xN )构成的子群，即 L ⊆ ZN。向量组

α1 = (1,−1, 0, . . . , 0),

α2 = (0, 1,−1, 0, . . . , 0),
...

αN−1 = (0, . . . , 0, 1,−1)

自然构成 L的一组基。进一步，ZN 上的标准内积 (x, y) =
∑
xiyi限制在 L上时，与由

Γ定义的内积 B 一致，因为它们在基向量上的取值相同：

(αi, αj) =


2, i = j,

−1, i, j 相邻,

0, otherwise.

由此可知，形如

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) = αi + αi+1 + · · ·+ αj−1

及

(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) = −(αi + αi+1 + · · ·+ αj−1)

的向量均为 L的根。因此，L中正根的数量为 N(N−1)
2

• 作为补充，我们列出其他 Dynkin图的正根数量：

DN : N(N − 1) E6 : 36 E7 : 63 E8 : 120

定义 7.10
设 α ∈ Zn是根，反射 (reflection) sα定义为

sα(v) := v −B(v, α)α

注：

• 设 Hα ⊂ Rn为与 α垂直的超平面，则 Hα在 sα作用下不变，且 Ssα(α) = −α。于是 sα是对

Hα的反射，且 B(x, x) = B(sα(x), sα(x))。

• 对每个 i，定义 si := sαi
称为简单反射 (simple reflection)，Weyl群W 定义为由 si生成的O(Rn)

的子群。
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7.4 Gabriel定理 7 箭图表示

• 对任意 w ∈W，w(αi)是根。更进一步我们有任意根均形如 w(αi)。

• 由 #roots< +∞知W 是有限群。

7.4 Gabriel定理

回忆箭图表示 V 的维数向量为

dimV = (dimV1, · · · , dimVn)

定理 7.4
Q形如 An, Dn, E6, E7, E8中一者，则 Q有有限多个不可分解表示。且

Ind(Q)→ R+(Q)

V 7→
∑
i

dimVi · αi

是双射，其中 R+(Q)是 Q对应的正根。

7.5 反射函子

定义 7.11
设Q为箭图，称一个点 i ∈ I 为汇点 (sink)/源点 (source)，如果所有包含 i的边均指向/指出 i。

i◦ i◦

sink source

定义 7.12

设 Q为任意箭图，且 i ∈ Q为汇点或源点。则定义 Qi 为 Q通过反转所有包含 i的有向边得

到的箭图。
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7.5 反射函子 7 箭图表示

定义 7.13 (反射函子)

• 设 Q为箭图，且 i ∈ Q为汇点。设 V 是 Q的一个表示。定义

F+
i : RepQ→ RepQi

其中：

F+
i (V )k =

Vk , k 6= i

ker
(
ϕ :
⊕

j→i Vj → Vi

)
, k = i

对任意的边 j
h−−→ k，若 k 6= i，xh : Vj → Vk 保持不变。若 k = i，将 xh变为

F+
i (V )i = kerϕ ↪→

⊕
j→i

Vj → Vi

• 设 Q为箭图，且 i ∈ Q为源点。设 V 是 Q的一个表示。定义

F−
i : RepQ→ RepQi

其中：

F−
i (V )k =

Vk , k 6= i

coker
(
ψ :
⊕

j→i Vj → Vi

)
, k = i

对任意的边 j
h−−→ k，若 k 6= i，xh : Vj → Vk 保持不变。若 k = i，将 xh变为

F−
i (V )i =

⊕
j→i

Vj →
⊕
j→i

Vj/Im(ψ)

例 7.5

考虑 Q =
1◦ 2◦ ，则

F−
1 (

1◦ 0◦ ) =
0◦ 0◦ F+

2 (
1◦ 0◦ ) =

1◦ 1◦

F−
1 (

0◦ 1◦ ) =
1◦ 1◦ F+

2 (
0◦ 1◦ ) =

0◦ 0◦

F−
1 (

1◦ 1◦ ) =
0◦ 1◦ F+

2 (
1◦ 1◦ ) =

1◦ 0◦

例 7.6

• 若 i是汇点，则 F+
i (S(i)) = 0。

• 若 i是源点，则 F−
i (S(i)) = 0。
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7.5 反射函子 7 箭图表示

命题 7.1
设 V ∈ Ind(Q)。

• 设 i是汇点，则要么 V = S(i)，要么 ϕ :
⊕

j→i Vj → Vi是满射。

• 设 i是源点，则要么 V = S(i)，要么 ψ : Vi →
⊕

i→j Vj 是单射。

证明. (1)：我们有分解 Vi = Imϕ⊗W，则

V = dimW · S(i)⊕ V ′

其中 V ′是通过将 V 中的 Vi替换为 Imϕ而得到的空间。若 V ∈ Ind(Q)，则要么 V ∼= S(i)，要

么 ϕ是满射。

(2)同理。

命题 7.2
设 V ∈ Rep(Q)。

• 设 i是汇点，ϕ :
⊕

j→i Vj → Vi是满射，则

F−
i F

+
i (V ) ∼= V dim(F+

i V ) = Si(dimV )

• 设 i是源点，ψ : Vi →
⊕

i→j Vj 是单射，则

F+
i F

−
i (V ) ∼= V dim(F−

i V ) = Si(dimV )

证明. 设K = ker(ϕ :
⊕

j→i Vj → Vi) = (F+
i (V ))i，于是

(F−
i F

+
i (V ))i = coker(ψ : K →

⊕
j→i

Vj) =
⊕
j→i

Vj/Imψ =
⊕
j→i

Vj/K ∼= Vi

由定义

dim(F+
i (V ))i − dimVi = dimK − dimVi =

∑
j→i

dimVj − 2 dimVi = −B(dimV, αi)

故 dimF+
i (V ) = dimV −B(dimV, αi)αi = Si(dimV )。

定义 7.14
对 v ∈ Zn，我们称 v ≥ 0当且仅当 vi ≥ 0, ∀1 ≤ i ≤ n。
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7.6 Coxeter元 7 箭图表示

推论 7.1
对 V ∈ Ind(Q)，若 i是汇点/源点，则 F+

i (V )/F−
i (V )要么是 0要么是不可分解的。且前者等

价于 V ∼= S(i)，后者等价于 Si(dimV ) ≥ 0。

在后者情形中，dimF±
i (V ) = Si(dimV )且 V ∼= F−

i F
+
i (V )/V ∼= F+

i F
−
i (V )。

7.6 Coxeter元

定义 7.15
给 Q引入一个固定标记 1, . . . , n，则 c := S1S2 · · ·Sn ∈W 称为 Coxeter元。

引理 7.3
令 β =

∑
i kiαi 6= 0，其中 ki ≥ 0, ∀i，则 ∃N ∈ N使得 cNβ 存在至少一个负常数。

证明. Coxeter元 c属于有限群W，故存在M ∈ N使得 cM = 1。我们断言：作为 Rn 上的算
子，有

1 + c+ c2 + · · ·+ cM−1 = 0

此式蕴含所需结论——因为 β 至少有一个严格正系数，故以下元素中必存在至少一个含严格

负系数：

cβ, c2β, . . . , cM−1β

进一步，只需证明 1不是 c的特征值。原因如下：若存在向量满足

(1 + c+ c2 + · · ·+ cM−1)v = w 6= 0

则有

cw = c
(
1 + c+ c2 + · · ·+ cM−1

)
v = (c+ c2 + · · ·+ cM−1 + 1)v = w

假设结论不成立，即 1是 c的特征值。设 v为对应特征向量：

cv = v =⇒ s1 · · · snv = v

⇐⇒ s2 · · · snv = s1v

由于 si仅改变 v的第 i个坐标，可得

s1v = v 且 s2 · · · snv = v

重复此过程，对所有 i得到

siv = v.

这意味着对所有 i有

B(v, αi) = 0.

因 B 是非退化的，故 v = 0。但 v是特征向量，矛盾。
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7.7 Gabriel定理的证明 7 箭图表示

7.7 Gabriel定理的证明

设 V 是箭图 Q的一个不可分解表示。我们给 Q引入一个固定标记 1, . . . , n，使得若从 i可达 j

则满足 i < j。这种标记是可行的——我们可以将最高标签赋给任意汇点，从箭图中移除此汇点，再

将次高标签赋给剩余箭图的汇点，依此类推。如此便构造出所需的标记。

现考虑序列

V (0) = V, V (1) = F+
n V, V (2) = F+

n−1F
+
n V, . . .

该序列良定义性源于所选标记：n必是Q的汇点，n− 1必是Qn的汇点（其中Qn是通过反转Q在

顶点 r的所有箭头所得），以此类推。进一步注意到 V (n)重新成为 Q的表示，因为每条箭头均被反

转两次（因我们对每个顶点都应用了反射函子）。这意味着可定义

V (n+1) = F+
n V

(n), . . .

并将序列无限延伸。

命题 7.3
存在m ∈ N使得

dim(V (m)) = αp

对某个单根成立。

下面我们来证明 Gabriel定理：Q形如 A,D,E，则下映射为双射

Ind(Q)→ R+(Q)

V 7→ dimV =
∑
i

dimVi · αi

我们分三步证明。

推论 7.2

dimV ∈ R+(Q)

推论 7.3
V, V ′ ∈ Ind(Q), dimV = dimV ′，则 V ∼= V ′。

推论 7.4
∀α ∈ R+(Q)，存在 V ∈ Ind(Q)，使得 dimV = α。

例 7.7
考虑 Q = D4。
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8 OKOUNKOV-VERSHIK对 Sn表示的新方法

8 Okounkov-Vershik对 Sn表示的新方法

动机：{1} = S1 ⊆ S2 ⊆ S3 ⊆ · · · ⊆ Sn−1 ⊆ Sn ⊆ · · ·，其中 Sk 可以视作 Sk+1 的子群（固定

k + 1）。

8.1 中心化子 ZB(A)和表示的限制

设 A,B 是半单代数，τ : B → A是同态，即对任意 A的表示 V 均可表示为某个 B 的表示在 τ

下的像。首先我们有

A
∼→

⊕
V ∈Irr(A)

End(V ) B
∼→

⊕
U∈Irr(B)

End(U)

对任意 V ∈ Irr(A), U ∈ Irr(B)，令MV,U := HomB(U, V )，则

V
∼→

⊕
U∈Irr(B)

U ⊗MV,U

是 B 的表示。

现在我们的问题是如何计算MV,U。为此我们需要如下定义：

定义 8.1
定义中心化子 (centralizer) ZB(A) ={

a ∈ A
∣∣∣aτ(b) = τ(b)a, ∀b ∈ B

}

• 当 B = A，τ = id时，ZB(A)即为 A的中心。

• ZB(A) ⊆ A是子代数。

• ZB(A)在MV,U 上有自然的作用。具体而言，对 z ∈ ZB(A), ϕ ∈MV,U，(z · ϕ)(u) = z(ϕ(u))。

引理 8.1

ZB(A)
∼→

⊕
U∈Irr(B),V ∈Irr(A)

MV,U ̸=0

End(MV,U )

推论 8.1
以下两个命题等价：

• ∀U ∈ Irr(B), V ∈ Irr(A)，有 dim HomB(U, V ) ≤ 1。

• ZB(A)交换。

证明. ZB(A) =
⊕

End(MV,U )交换⇐⇒ dimMV,U ≤ 1

注：于是作为 B 的表示 V =
⊕

U,MV,U ̸=0 U，所以 U 由 V 的子空间唯一确定。
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8.2 Zm(n)代数 8 OKOUNKOV-VERSHIK对 Sn表示的新方法

8.2 Zm(n)代数

在本节中，我们考虑代数

Zm(n) := ZCSm
(CSn)

其中 0 ≤ m < n。首先我们有：

引理 8.2
设 H ⊆ G是有限群，则

ZCH(CG) =

{∑
g∈G

agg
∣∣∣ag ∈ C, ahgh−1 = ag, ∀h ∈ H

}

特别的，ZCH(CG)有基 {
bc :=

∑
g∈c

g
∣∣∣c ∈ G的H −共轭类}

证明. ∑
g∈G

agg ∈ ZCH(CG)⇐⇒ ∀h ∈ H,
∑
g∈G

aghg =
∑
g∈G

aggh

⇐⇒ ∀h ∈ H, ag = ahgh−1

考虑 Sm ⊆ Sn，Sm 在 Sn 上的共轭作用为元素 1, 2, · · · ,m的置换，故 Sn 中的 Sm−共轭类为
m+ 1, · · · , n中元素的轮换。

例 8.1
考虑m = n− 1，共轭类为 (∗, n)，包含了 {(1, n), (2, n), · · · , (n− 1, n)}，此时

b(∗,n) =
n−1∑
i=1

(i, n) =: Jn ∈ ZCSn−1
(CSn)

其中 Jn称为 Jucys-Murphy元。

注意到 Zm(n)含有：

• Sn的中心 Zm(m)且 Zm(m) ⊆ Zm(n)的中心。

• S[m+1,n] =
{
g ∈ Sn

∣∣∣g(i) = i, ∀1 ≤ i ≤ m
}
。

• 考虑 Jucys-Murphy元 Jk :=
∑k−1

i=1 (i, k)与 CSk−1 交换。故 Jm+1, · · · , Jn ∈ Zm(n)。更进一步
的，对m+ 1 ≤ k < l ≤ n我们有 JkJl = JlJk，这是因为 Jl ∈ Zl−1(l)且 Jk ∈ CSl−1。

定理 8.1
代数 Zm(n)由 Zm(m),CS[m+1,n], Jm+1, · · · , Jn生成。
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8.3 分支图 8 OKOUNKOV-VERSHIK对 Sn表示的新方法

证明. 之后补。

推论 8.2
我们有：

• Zn−1(n)交换。

• ∀U ∈ Irr(CSn−1), V ∈ Irr(CSn),

dim HomCSn−1
(U, V ) ≤ 1

• 设 V ∈ Irr(CSn)，则 Jucys-Murphy元素 Jn 在 V 的每个不可约 CSn−1-子模上的作用均
为标量乘法。

证明. (1)：Zn−1(n)由 Zn−1(n− 1)与 Jn生成，且前者在 Zn−1(n)的中心里。

(2)：由 (1)即得，且

Zn−1(n) ∼=
⊕

U∈Irr(CSn−1),V ∈Irr(CSn)

End(HomCSn−1
(U, V ))

(3)：设 V =
⊕

i Ui作为 Sn−1−表示，Ui不可约。由于 Jn与 CSn−1交换，故

Jn ∈ HomSn−1
(V, V ) ∼=

⊕
i

HomSn−1
(Ui, Vi) ∼=

⊕
i

C

故 Jn在每个 Ui上作用均为标量。

8.3 分支图

对任意 V n ∈ Irr(Sn), U ∈ Irr(Sn−1)，由于 dim HomSn−1
(U, V n) ≤ 1，我们可以将 V n 唯一分解

为两两不同构的 Sn−1−表示的直和。

定义 8.2
分支图 (branching graph)是一个有向图，其顶点由所有的 Sn表示的同构类组成，n ≥ 1，有

边 U → V 当且仅当存在 n使得 V ∈ Irr(Sn), U ∈ Irr(Sn−1)且 HomSn−1
(U, V ) 6= 0。

注：由于 U ⊂ V 当且仅当 U ⊗ sgnn−1 ⊂ V ⊗ sgnn，于是张量积上一个 sgn表示给出了分支图
的一个对称。
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8.3 分支图 8 OKOUNKOV-VERSHIK对 Sn表示的新方法

例 8.2

triv4 std4 C2 std4 ⊗ sgn4 sgn4

triv3 std3 sgn3

triv2 sgn2

triv1

定义 8.3
对 V m ∈ Irr(Sm), V n ∈ Irr(Sn),m < n，在分支图中定义

Path(V m, V n) :=
{
V m到V n的所有道路

}
Path(V n) := Path(V 1, V n) Pathn :=

⊔
V n∈Irr(Sn)

Path(V n)

定义 8.4

对 P = (V m → V m+1 → · · · → V n) ∈ Path(V m, V n)，记 V m(P )为 V m通过 V m → V m+1 →
· · · → V n的方式嵌入到 V n内部所对应的副本。故有

V n =
⊕

Vm∈IrrSm

⊕
P∈Path(Vm,V n)

V m(P )

记 ϕP : V m ↪→ V n为对应的嵌入，该嵌入在缩放意义下是唯一的。且 ϕp的像为 V m(P )。

对于m+ 1 ≤ k ≤ n，定义 wk ∈ C满足

Jk|V k−1⊆V k = wk · IdV k−1

并称 wP := (wm+1, · · · , wn)为 p的权 (weight)。

另一方面，HomSm
(V m, V n)是Zm(n)的不可约表示。回顾：对 z ∈ Zm(m)和ϕ ∈ HomSm

(V m, V n)

有 (z ·ϕ)(u) = z(ϕ(u)), 其中u ∈ V m。易验证 z ·ϕ ∈ HomSm
(V m, V n)。因此，Jm+1, · · · , Jn ∈ Zm(n)

作用于 HomCSn
(V m, V n)上。

引理 8.3

•
{
ϕP

∣∣∣P ∈ Path(V m, V n)
}
是 HomSm

(V m, V n)的一组基。

• ∀m+ 1 ≤ k ≤ n, P ∈ Path(V m, V n)与 wP = (wm+1, · · · , wn)，则

Jk · ϕP = wkϕP
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对m = 1，HomS1
(V 1, V n) = HomC(C, V n) ∼= V n。∀P ∈ Path(V n)，记 vP = ϕP ∈ V n。

推论 8.3

•
{
vP

∣∣∣P ∈ Path(V n)
}
是 V n的一组基。

• ∀1 ≤ k ≤ n，JkvP = wk · vP。

这里 w1 = 0，wP = (0, w2, · · · , wn) ∈ Cn。

例 8.3

triv4 std4 C2 std4 ⊗ sgn4 sgn4

triv3 std3 sgn3

triv2 sgn2

triv1

3
−1

2
0 −2

1
−3

2

−1 1

−2

1 −1

推论 8.4

令m < n，V m ∈ Irr(Sm), V n ∈ Irr(Sn)，P ∈ Path(V m)，P ∈ Path(V m, V n)。设 P ∈ Path(V n)

为其串联 PP，则 vP 与 ϕP (vP )成比例。

8.4 权的唯一性

定理 8.2
令 P, P ′ ∈ Pathn，若 wP = wP ′，则 P = P ′。

定义 8.5

令 wtn :=
{
wP

∣∣∣P ∈ Pathn
}
，称 wP 与 wP ′ 是表示等价的，若其均为两个不可约表示之间的

道路的权。

8.5 改变道路

定义 8.6
设 P = (V 1 → V 2 → · · ·V n) ∈ Path(V n)，对 1 ≤ i ≤ n定义

Path(P, i) =
{
V ′1 → V ′2 → · · · → V ′n

∣∣∣V ′j = V j , ∀j 6= i
}
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定理 8.3
令 wP = (w1, · · · , wn)，则

• wi 6= wi+1

• 若 wi+1 = wi ± 1，则 Path(P, i) = {P}

• 若 wi+1 6= wi ± 1，则 Path(P, i) = {P, P ′}，且

wP ′ = (w1, · · · , wi−1, wi+1, wi, wi+2, · · · , wn)

• 若 i < n− 1，且 wi = wi+1 + 1，则 wi+2 6= wi。

考虑 Zi−1(i+ 1) ⊂ CSn，令

VP,i := spanC

{
vP ′

∣∣∣P ′ ∈ Path(P, i)
}

注意到
{
vP ′

∣∣∣P ′ ∈ Path(P, i)
}
是 VP,i的基。

命题 8.1
VP,i ⊂ V n是 Zi−1(i+ 1)−子模，且是不可约 Zi−1(i+ 1)−模。

8.6 退化仿射 Hecke代数 H(2)

定义 8.7
退化仿射 Hecke代数 (degenerate affine Hecke algebra )H(2)由 X1, X2, T 生成，满足如下条

件：

X1X2 = X2X1, T
2 = 1, TX1 = X2T − 1

回忆 Zi−1(i+ 1)由 Zi−1(i+ 1)的中心、Ji、Ji+1与 (i, i+ 1)生成。

引理 8.4

JiJi+1 = Ji+1Ji, (i, i+ 1)2 = 1, (i, i+ 1)Ji = Ji+1(i, i+ 1)− 1

故存在代数同态 H(2)→ Zi−1(i+ 1)，进而任意 Zi−1(i+ 1)−模都是 H(2)−模。

推论 8.5
令M 是不可约 Zi−1(i+ 1)−模，则M 也是不可约 H(2)−模。

可以证明
{
Xd1

1 X
d2
2 σ
∣∣∣d1, d2 ∈ Z≥0, σ ∈ {1, T}

}
为 H(2)的基，留做习题。
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8.7 H(2)的有限维不可约表示

令 M 为有限维不可约 H(2)− 模。由 X1X2 = X2X1 知其有相同的特征向量 m ∈ M，满足

X1m = am,X2m = bm, a, b ∈ C。考虑 Tm，若 Tm,m线性独立，则有M = span {M,TM}且

T →

(
0 1

1 0

)
, X1 →

(
a −1
0 b

)
, X2 →

(
b 1

0 a

)

另一方面，对于任意 a, b ∈ C上式满足 H(2)的定义。于是这给出了一个 C2 上的 H(2)−模结
构，记为M(a, b)。

引理 8.5
M(a, b)不可约当且仅当 a 6= b ± 1。更进一步的，若 a 6= b ± 1，M(a, b) ∼= M(a′, b′)当且仅

当 (a, b) = (a′, b′)或 (a, b) = (b′, a′)。

综合一下得到：

命题 8.2
H(2)的有限维不可约表示由一对复数确定，(a, b) 7→ L(a, b)，其中 L(a, b) ∼= L(b, a)若 b 6=
a, b 6= a± 1。在 L(a, b)中 (a, b)对应 X1, X2的特征向量。我们还有：

• 若 b = a+ 1，则 L(a, b) ∼= C，

T 7→ 1, X1 7→ a,X2, 7→ b

• 若 b = a− 1，则 L(a, b) ∼= C，

T 7→ −1, X1 7→ a,X2, 7→ b

• 若 b 6= a± 1，则 L(a, b) ∼= C2，

T →

(
0 1

1 0

)
, X1 →

(
a −1
0 b

)
, X2 →

(
b 1

0 a

)

• X1, X2在 L(a, b)上作用是可对角化的当且仅当 a 6= b。

下面我们可以证明 Path(P, i)的分类定理

证明. 下次补。

8.8 完成分类

现在我们利用 Path(P, i)的分类定理与 #Irr(Sn) = #共轭类来结束 Irr(Sn)的分类。
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定义 8.8
一个 Cn上的可容对换 (admissible transposition)为

(w1, · · · , wn) 7→ (w1, · · · , wi−1, wi+1, wi, wi+2, · · · , wn)

若 wi+1 6= wi ± 1。

定义 8.9
我们称 Cn中的两个元素是组合等价的 (combinatorial equivalent)，若其中一个可通过一系列
可容对换得到另一个。此等价关系记为 ∼c。

定义 8.10
一个组合权 (combinatorial weight) 为 Cn 的一个元素，使得任意与其组合等价的元素
(w1, · · · , wn)均满足：

• w1 = 0

• wi 6= wi+1, ∀1 ≤ i ≤ n− 1

• ∀1 ≤ i ≤ n− 2, wi+1 = wi ± 1

记 cwtn为所有组合权。

推论 8.6

• wtn ⊂ cwtn，且 wtn是一个组合等价类。

• 组合等价是表示等价。

于是我们有

|P (n)| = |wtn/ ∼r| ≤ |wtn/ ∼c| ≤ |cwtn/ ∼c|

引理 8.6
任意组合等价类均含有一个元素

(0, 1, · · · , n1 − 1,−1, 0, · · · , n2 − 2,−2,−1, · · · , n3 − 3, · · · , 1− k, · · · , nk − k)

这里 n1 ≥ · · · ≥ nk ≥ 1满足
∑
ni = n。

这表明

|cwtn/ ∼c| ≤ |P (n)|

结合上一不等式我们有
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命题 8.3

• cwtn = wtn。

• ∼c=∼r。

• 引理中的 (n1, · · · , nk)由等价类唯一确定。

综上，对任意 V ∈ Irr(Sn)，我们有元素 wtn/ ∼r 与之对应，即某个 n的分划 λ = (n1, · · · , nk)，
这表明 Irr(Sn)与 Pn一一对应。

例 8.4

triv4 std4 C2 std4 ⊗ sgn4 sgn4

triv3 std3 sgn3

triv2 sgn2

triv1

3
−1

2
0 −2

1
−3

2

−1 1

−2

1 −1

• triv4，仅有唯一的权 (0, 1, 2, 3)，得 λ = (4)。

• std4，有权 (0, 1, 2,−1) , (0, 1,−1, 2), (0,−1, 1, 2)，得 λ = (3, 1)。

• C2，有权 (0, 1,−1, 0) , (0,−1, 1, 0)，得 λ = (2, 2)。

• std4 ⊗ sgn4，有权 (0, 1,−1,−2) , (0,−1, 1,−2), (0,−1,−2, 1)，得 λ = (2, 1, 1)。

• sgn4，仅有唯一的权 (0,−1,−2,−3)，得 λ = (1, 1, 1, 1)。

8.9 Young图

回忆，一个标准 Young表 SY T (n)为一种将 1, 2, · · · , n填入 Young表 Yλ 中满足从上到下从左

到右均严格递增。一个标准 Young表 T 所对应的 Young表被称为 T 的形状。

定义 8.11
对 SY T (n) T，定义其 content

c(T ) := (x1 − y1, · · · , xn − yn)

其中 (xi, yi)为 i对应的坐标。

可以证明 T 7→ c(T )是单射，留做习题。
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命题 8.4
映射 T 7→ c(T )是 SY T (n)与 cwt(n)的双射。更进一步的，T 的形状等同于由 c(T )所确定

的划分。

推论 8.7

令 λ ∈ P (n)，Vλ为其对应 Sn的不可约表示。存在 Vλ的基
{
vT

∣∣∣T ∈ SY T (n), T 形状为Yλ}，
且 Ji · vT = (xi − yi)vT，其中 (xi, yi)为 i在 T 中的坐标。

推论 8.8
λ ∈ P (n)，则作为 Sn−1−表示

Vλ =
⊕
µ

Vµ

其中 µ遍历所有比 λ少一个格子的 Young表。更进一步的，Jn作用在 Vµ为标量，其值为少

的格子的 content。

定义 8.12
定义 Young图为一个有向图，其顶点为 Young表，µ→ λ当且仅当 µ比 λ少一个格子。

推论 8.9
在
⊔
n≥1 Irr(Sn)与 Young表的一一对应关系下，分支图等于 Young图。

注：利用Young图，很容易得到对 P ∈ Path(Vλ)的权wP = (w1, · · · , wn)，因为我们直接有wi =

λi \ λi−1的 content。

Vλi

Vλi−1

wi
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