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摘要

在平方和（SOS）证明系统中，给出了反向超压缩不等式的形式化
表述及其完全证明。
作为推论，证明了常数阶的 SOS 算法能够解决 Frankl-Rödl 图的整
数间隙问题。
对于任意常数 0 < γ ≤ 1/4，度数为 4⌈ 1

4γ ⌉ 的 SOS/Lasserre 层级能
够证明：

Frankl-Rödl 图 FRn
γ 的最大独立集大小为 o(1)。
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背景：SOS 证明系统与半定规划

什么是 SOS (Sum-of-Squares) 证明系统？
SOS是一个基于代数的证明系统，用于证明多项式不等式 P(x) ≥ 0。
核心思想：如果 P(x) 可以写成一组多项式的平方和
（P(x) =

∑
Qi(x)2），那么 P(x) 必然非负。

算法意义：寻找 d 阶 SOS 证明等价于求解一个大小为 nO(d) 的半
定规划（SDP）。
它是目前已知最强大的 SDP 松弛层级之一（Lasserre 层级）。

为什么研究 SOS？
在理论计算机科学中，我们想知道高效算法（如 P, 准 P）的极限在
哪里。
SOS 层级为许多优化问题（如最大割、唯一博弈）提供了最佳近似
算法。
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背景：Frankl-Rödl 图与整数间隙

Frankl-Rödl 图 (FRn
γ)

顶点是 n 维超立方体 {−1, 1}n。
边连接那些汉明距离恰好为 (1− γ)n 的点对。
汉明距离：两个二进制向量中不同坐标的数量。
该图的最大独立集非常小（密度趋于 0），因此色数非常大。

整数间隙 (Integrality Gap)
这是一个著名的“困难实例”。
尽管真实色数很大，但许多标准的 SDP 松弛（如 Lovász Theta 函
数）会被“欺骗”，认为该图包含很大的独立集（即认为色数很小）。
这被称为“整数间隙”：凸松弛的最优解与整数规划的真实解之间
存在巨大差距。
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研究动机

证明常数阶的 SOS 确实能证明 Frankl-Rödl 图的独立集很小。
这种图的性质与布尔函数的分析性质（特别是噪声算子）密切相关。
在分析学中，控制噪声算子范数的工具是超压缩不等式。
要在 SOS 中证明图的性质，我们必须先在 SOS 系统中建立对应的
分析工具——即反向超压缩不等式。
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基本定义：布尔函数分析

定义 (噪声算子 Tρ)
设 f : {−1, 1}n → R，−1 ≤ ρ ≤ 1，定义：

Tρf(x) = Ey[f(y)|x]

其中 y 是 x 的 ρ-相关副本，即 E[xiyi] = ρ,E[xi] = E[yi] = 0 且各坐标独
立。等价地，在傅里叶展开下，

Tρf =
∑

S⊆[n]
ρ|S|̂f(S)χS

定义 (p-范数)

||f||p = Ex∼{−1,1}n [|f(x)|p]1/p

这里期望是针对均匀分布取的。
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SOS 证明系统的形式化定义

定义 (SOS 证明)
设 X 为变量集，A = {q1 ≥ 0, ..., qm ≥ 0} ∪ {r1 = 0, ..., rm′ = 0} 为约束
条件。我们说 A 以度数 k SOS-证明 p ≥ 0，记作 A ⊢k p ≥ 0，当且仅当
存在 v1, ..., vm′ 和 SOS 多项式 u0, u1, ..., um 使得：

p = u0 +
m∑

i=1

uiqi +
m′∑
j=1

vjrj

且表达式中每一项的度数都不超过 k。

SOS 反驳：如果 A ⊢k −1 ≥ 0，则称 A 具有 k 阶 SOS 反驳（说明
集合 A 无解）。
单变量非负多项式是 SOS。
齐次双变量非负多项式是 SOS。
当 A = ∅ 时，有时使用简写 ⊢k p ≥ 0，这简单地意味着 p 是 SOS
且 deg(p) ≤ k。
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预备知识

引理 (凸性)
对于任何 k ∈ N+，我们有

⊢2k (
X + Y

2
)2k ≤ X2k + Y2k

2

证明.
由齐次双变量非负多项式是 SOS 以及

X2k + Y2k

2
− (

X + Y
2

)2k ≥ 0
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超压缩不等式

超压缩不等式 (Hypercontractive Inequality)
设 f : {−1, 1}n → R，1 ≤ p ≤ q ≤ ∞，0 ≤ ρ ≤

√
(p − 1)/(q − 1)。那么

||Tρf||q ≤ ||f||p

反向超压缩不等式 (Reverse Hypercontractive Inequality)
设 f : {−1, 1}n → R≥0，−∞ ≤ q ≤ p ≤ 1，0 ≤ ρ ≤

√
(1− p)/(1− q)。

那么
||Tρf||q ≥ ||f||p
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本文证明的 SOS 版本定理

我们主要证明如下特殊情况的 SOS 版本：

定理 (正向)
对于偶整数 q = 2s，在矩条件下，存在不等式 ||Tρf||q ≤ ||f||2 的 SOS 证
明。

定理 (反向)
设 k ∈ N+，ρ ≤ 1− 1/(2k)。对于任意函数 f, g，存在如下不等式的 SOS
证明：

E(x,y)[f(x)2kg(y)2k] ≥ E[f]2kE[g]2k
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基础情况 (n = 1)

定理 (正向)
对于偶整数 q = 2s，在矩条件下，存在不等式 ||Tρf||q ≤ ||f||2 的 SOS 证
明。

证明.
由于齐次性，设 f(x) = 1 + ϵx。展开两边：

LHS = E[(1 + ρϵx)2s] =
∑(

2s
2j

)
ρ2jϵ2jE[x2j]

RHS = (1 + ϵ2)s =
∑(

s
j

)
ϵ2j

矩条件：E[x2i ] = 1，E[x2j−1
i ] = 0，E[x2j

i ] ≤ (2s − 1)j (
s
j)

(2s
2j)
。
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归纳步骤

从 n = 1 推广到一般 n 需要处理乘积项。在 SOS 中，我们不能直接使
用 Hölder 不等式。

引理
对于偶整数 v，有 SOS 证明：

v∏
i=1

GiHi ≤
1( v

v/2
) ∑

|T|=v/2

∏
i∈T

G2
i

∏
i∈[v]\T

H2
i

利用归纳法将 n 维函数拆解为 f(x) = xng + h。
展开 Tρf 的 2s 次方。
利用上述引理将交叉项 GiHi 分解为平方项。
最后使用 Zeilberger 算法证明产生的组合系数恒等式。
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反向超压缩

定理 4.1
⊢4k E[f(x)2kg(y)2k] ≥ E[f]2kE[g]2k

在 n = 1 时，涉及 f(1), f(−1), g(1), g(−1) 四个变量。通过变量代换和齐
次化，进一步将其归约为证明双变量多项式 Pk(a, b) 的非负性。

两点不等式
设 k ∈ N+ 且 ρ∗ = 1− 1

2k。那么

⊢4k Pk(a, b) :=(
1

4
+

1

4
ρ∗)((1 + a)2k(1 + b)2k + (1− a)2k(1− b)2k)

+(
1

4
− 1

4
ρ∗)((1 + a)2k(1− b)2k + (1− a)2k(1 + b)2k)− 1

≥ 0
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两点不等式的计算机辅助证明

为了证明 Pk(a, b) 是 SOS，我们使用变量代换：

r = a − b, s = a + b, t = ab

将 Pk 重写为关于 s2 的多项式：

Pk(a, b) = Qk,0(t) + Qk,1(t)s2 + · · ·+ Qk,k(t)s2k

关键步骤：
如果能证明每个系数多项式 Qk,i(t) 在实数上非负，则由单变量
SOS 事实，整体即为 SOS。
我们利用 Zeilberger 算法找到了 Qk,i(t) 的闭式解。
剩下的就是 dirty work 了。
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归纳步骤

设 n > 1。我们将 f 和 g 根据第 n 个坐标 xn 的值分解为 f0, f1 和 g0, g1（例如
f0(x′) 表示 f(x′, 1)）。期望可以展开为：

E(x,y)[f(x)2kg(y)2k] = (
1

4
+

1

4
ρ)E[f0(x)2kg0(y)2k] + (

1

4
+

1

4
ρ)E[f1(x)2kg1(y)2k]

+ (
1

4
− 1

4
ρ)E[f0(x)2kg1(y)2k] + (

1

4
− 1

4
ρ)E[f1(x)2kg0(y)2k]

应用四次归纳假设（对于 n − 1 维的情况 ⊢4k）：

⊢4k RHS ≥ (
1

4
+

1

4
ρ)E[f0]2kE[g0]2k + (

1

4
+

1

4
ρ)E[f1]2kE[g1]2k

+ (
1

4
− 1

4
ρ)E[f0]2kE[g1]2k + (

1

4
− 1

4
ρ)E[f1]2kE[g0]2k

最后，将 n = 1 的基础情况应用于上述不等式的右侧，即得证：

≥
(
E[f0] + E[f1]

2

)2k (E[g0] + E[g1]
2

)2k
= E[f]2kE[g]2k □
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SOS 中的 Frankl-Rödl 定理

定理
给定 Frankl-Rödl 图 FRn

γ，对于度数 4⌈ 1
4γ ⌉ 的 SOS 系统，可以反驳以下

关于独立集大小的断言：

1

|V|
∑
x∈V

f(x) ≥ Cn−γ/10

即 SOS 能够“看出”该图没有大的独立集。

我们将图的组合性质翻译为分析语言，并利用反向超压缩不等式导出矛
盾。
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分析语言

定理
设 n ∈ N+ 且 1

log n ≤ γ ≤ 1
4 使得 (1− γ)n 为偶整数。给定 Frankl-Rödl

图 FRn
γ = (V,E)，对于每个 x ∈ V = {−1, 1}n，设 f(x) 为一个不定元。

那么存在度数为 4⌈ 1
4γ ⌉ 的 SOS 反驳对应表述 Max − IS(G) ≥ O(n−γ/10)

的系统，即：
f(x)2 = f(x) ∀x ∈ V,
f(x)f(y) = 0 ∀(x, y) ∈ E,
1

|V|
∑
x∈V

f(x) ≥ Cn−γ/10

 ⊢4⌈ 1
4γ

⌉ −1 ≥ 0

其中 C 是任意常数。
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证明步骤 1：算子转化

定义图的邻接算子 Sdf(x) = Ey∼N(x)[f(y)]。
由于 f 是独立集的指示函数，如果在距离 d 处有边，则 ⟨f, Sdf⟩ = 0。
技术难点：图算子有奇偶性限制。我们需要引入混合算子

S′
d =

1

2
Sd +

1

2
Sd+1

(Siavosh Benabbas, Hamed Hatami, and Avner Magen.)：设
d = n − c。对于 ρ = 1− 2d/n，有：

⟨f, S′
df⟩ − ⟨f,Tρf⟩ =

∑
f̂(U)2δ(U)

其中误差项 δ(U) 满足

∥δ(U)∥∞ = O
(

max
{

n−1/5,
n
c2 log2

(
c2
n

)})
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证明步骤 2：导出矛盾

我们将 f 根据汉明权重的奇偶性分解为 f0 和 f1。由于 d 是偶数，
图的边只连接同奇偶性的点，因此独立集约束蕴含：

A ⊢2 ⟨f0, S′
df0⟩+ ⟨f1, S′

df1⟩ = 0

由步骤 1 得到

{f(x)f(y) = 0∀∆(x, y) = d} ⊢2 ⟨f0,Tρ′f0⟩+ ⟨f1,Tρ′f1⟩ ≤ δE[f2]

转换为正相关形式 ρ = 1− 2γ，并提升至 2k 次幂：{
f2(x) = f(x), ∀x, f(x)f(y) = 0∀∆(x, y) = d

}
⊢4k

E[f0(x)2kg0(y)2k] + E[f1(x)2kg1(y)2k] ≤ δE[f]{
f2(x) = f(x), ∀x

}
⊢2 δE[f] = δE[2f − f2] = δE[1− (1− f)2] ≤ δ
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证明步骤 2：导出矛盾

应用反向超压缩定理 4.1 及凸性不等式：{
f2(x) = f(x), ∀x, f(x)f(y) = 0∀∆(x, y) = d

}
⊢4k δ

≥ E[f0]2kE[g0]2k + E[f1]2kE[g1]2k

= E[f0]4k + E[f1]4k ≥ 2

(
E[f]
2

)4k
= 21−4kE[f]4k

代入条件 E[f] ≥ Cn−γ/10 得到：

C4kn−1/10 ≤ 24k−1δ ∼ 24k−1n−1/5

即我们证明了 A ⊢4k −1 ≥ 0，从而完成反驳。
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结论

建立了反向超压缩不等式的 SOS 证明。
利用该工具解决了 Frankl-Rödl 图的整数间隙问题。
展示了计算机代数在证明复杂性中的威力。
开放问题：

是否存在更优雅的、无需计算机辅助的证明？
能否将结果推广到 γ 更小的情况（如

√
log n

n ）？
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