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摘要

本文的主要结果是在 Sum-of-Squares (SOS) 证明系统中，给出了反向超压缩不
等式（Reverse Hypercontractive Inequality）的形式化表述及其证明。
作为该结果的一个推论，我们证明了对于任意常数 0 < γ ≤ 1/4，SOS/Lasserre

半定规划（SDP）层级在度数为 4d 1
4γ e 时，能够证明如下命题：

Frankl-Rödl 图 FRn
γ 的最大独立集的相对大小为 o(1)。

这里 FRn
γ = (V,E)是一个顶点集为 V = {0, 1}n 的图，当且仅当 ∆(x, y) = (1−γ)n

且为偶数时，(x, y) ∈ E。

特别地，我们将展示 4 阶的 SOS 算法能够证明色数下界 χ(FRn
1/4) = ω(1)。这

表明 SOS 层级在处理特定的积分与组合问题时，比标准的 SDP 松弛具有更强的证
明能力。
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1 引言

超压缩不等式（Hypercontractivity）是布尔函数分析中的核心工具，广泛应用于理
论计算机科学、社会选择理论及概率论中。近年来，随着证明复杂性（Proof Complexity）
和平方和（Sum-of-Squares, SOS）算法的发展，研究这些分析不等式是否能在受限的证
明系统（如 SOS）中被证明变得尤为重要。

1.1 基本定义

首先，我们引入布尔函数分析中的一些基本算子和范数定义。

(噪声算子 Tρ). 设 f : {−1, 1}n → R为布尔立方体上的实值函数，相关系数 −1 ≤ ρ ≤ 1。

定义噪声算子 Tρ 为：

Tρf(x) = E[f(y) | x]

其中 y 是 x 的一个 ρ-相关副本。具体来说，对于 y 的每一个分量 yi，以概率
1+ρ
2
取

yi = xi，以概率
1−ρ
2
取 yi = −xi。

等价地，在傅里叶展开下，设 f(x) =
∑

S⊆[n] f̂(S)χS(x)，则：

Tρf =
∑
S⊆[n]

ρ|S|f̂(S)χS

这表明 Tρ 算子对高频傅里叶系数有指数级的衰减作用。

(p-范数). 对于 p ∈ R（注意这里 p 不一定大于等于 1），定义：

||f ||p = Ex∼{−1,1}n [|f(x)|p]1/p

其中期望是针对均匀分布取的。

1.2 超压缩不等式与反向超压缩不等式

经典的超压缩不等式描述了噪声算子如何将函数的范数“压缩”到更高阶的范数，

而反向超压缩不等式则处理 p < 1 的情况，通常涉及非负函数。

(超压缩不等式). 设 f : {−1, 1}n → R，且 1 ≤ p ≤ q ≤ ∞。若 0 ≤ ρ ≤
√

p−1
q−1
，那么：

||Tρf ||q ≤ ||f ||p

(反向超压缩不等式). 设 f : {−1, 1}n → R≥0 为非负函数，且 −∞ ≤ q ≤ p ≤ 1。若

0 ≤ ρ ≤
√

1−p
1−q
，那么：

||Tρf ||q ≥ ||f ||p

在 SOS 系统的背景下，Barak 等人之前的工作已经建立了 (2, 4)-超压缩不等式的
SOS 证明。
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定理 1.1. 设 k ∈ N，令 P≤k 为投影算子，将 f 映射到其度数不超过 k 的部分。那么：

||P≤kf ||4 ≤ 3k/2||f ||2

Barak 等人证明了，如果将 f(x) 视为形式变量，那么多项式 9k||f ||42 − ||P≤kf ||44 可以写
成多项式的平方和（SOS）。

定理 1.2. 对于任意 q ≥ 2 和 f : {−1, 1}n → R，我们有

||P≤kf ||q ≤ (q − 1)k/2||f ||2

Ryan ODonnell 和 Yuan Zhou 未能通过 SOS 证明实际获得定理 1.2，而是获得了
一个较弱的版本。

定理 1.3. 设 f, g : {−1, 1}n → R≥0，设 0 ≤ q ≤ 1，且 0 ≤ ρ ≤ 1− q。那么当 (x, y) 是

一对 ρ-相关随机字符串时，
E[f(x)g(y)] ≥ ||f ||q||g||q

我们在这里将介绍的就是定理 1.3 的 SOS 证明，其中 q 等于偶整数的倒数。作为

该结果的一个应用，我们证明了仅仅使用 SOS 层级中的 4 阶算法，就能证明用于 3-染
色问题的“Frankl-Rödl”SDP 整数间隙实例具有色数 ω(1)。

定理 1.4. 设 s ∈ N+ 并记 q = 2s。设 0 ≤ ρ ≤ 1√
q−1
。设 x = (x1, ..., xn) 是一系列独立

的实随机变量，每个 xi 满足：

E[x2j−1
i ] = 0,E[x2j

i ] ≤ (2s− 1)j

(
s
j

)(
2s
2j

) , 1 ≤ j ≤ s

进一步假设每个 i 都有 E[x2
i ] = 1。那么对于函数 f1, ..., fs : {−1, 1}n → R，存在如下不

等式的 SOS 证明：

E[
s∏

i=1

(Tρfi(x))
2] ≤

s∏
i=1

E[fi(x)2]

然而，对于更一般的 q（定理 1.2），之前的研究未能给出完整的 SOS 证明。本文将
重点关注反向超压缩不等式的 SOS 版本（定理 1.3 的变体），特别是当 q 为偶整数的倒

数时。

定理 1.5. 设 k ∈ N+ 且 0 ≤ ρ ≤ 1− 1
2k
。对于函数 f, g : {−1, 1}n → R，存在如下不等

式的 SOS 证明：
E(x,y)[f(x)

2kg(y)2k] ≥ E[f ]2kE[g]2k

注意，这里我们将反向超压缩不等式转化为了关于 2k 次幂的多项式形式，避免了

在 SOS 系统中处理非整数次幂（如 p-范数当 p < 1 时）的困难。
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1.3 应用：Frankl-Rödl 图

我们的主要应用是针对 Frankl-Rödl 图的独立集问题。

定义 1.6. 设 n ∈ N 且 0 ≤ γ ≤ 1 使得 (1 − γ)n 为偶整数。Frankl-Rödl 图 FRn
γ 是

N = 2n 个顶点 {−1, 1}n 上的无向图，边集为

{(x, y) : ∆(x, y) = (1− γ)n}

其中 ∆(·, ·) 表示汉明距离。

定义 1.7 (Frankl-Rödl 图 FRn
γ ). 设 (1− γ)n 为偶整数。图 FRn

γ 的顶点集为 {−1, 1}n，
边集为 {(x, y) : ∆(x, y) = (1− γ)n}，其中 ∆ 为 Hamming 距离。

已知该图是 SDP 松弛的经典反例（Integrality Gap）。然而，我们将证明 SOS 层级
可以有效地约束其最大独立集的大小。

定理 1.8. 存在常数 K 使得对于所有 γ ≤ 1/4，成立

Max-IS(FRn
γ ) < n(1− γ2/K)n

特别地，当 γ ≥ Ω(
√

logn
n

) 且 n 足够大时：

Max-IS(FRn
γ ) ≤ on(1)

χ(FRn
γ ) = ωn(1)

Min-VC(FRn
γ ) ≥ 1− on(1)

2 预备知识：SOS 证明系统
在深入证明之前，我们需要形式化定义 SOS 证明系统及其相关符号。

定义 2.1 (SOS 证明). 设 X = (X1, ..., Xn) 为一组不定元。给定多项式集合 A = {q1 ≥
0, ..., qm ≥ 0} ∪ {r1 = 0, ..., rm′ = 0} 和多项式 p。我们称 A 以度数 k SOS-证明 p ≥ 0，

记作 A `k p ≥ 0，当且仅当存在多项式 vj 和 SOS 多项式（即多项式的平方和）ui, u0

使得：

p = u0 +
m∑
i=1

uiqi +
m′∑
j=1

vjrj

且上述表达式中每一项的度数都不超过 k（即 deg(u0), deg(uiqi), deg(vjrj) ≤ k）。

特别地：

• A `k −1 ≥ 0 称为 k 阶 SOS 反驳（Refutation），意味着集合 A 定义的约束系统

无解。
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• 若 A = ∅，记作 `k p ≥ 0，意味着 p 本身就是一个度数不超过 k 的平方和多项式。

以下引理和事实在后续证明中将频繁使用：

引理 2.2. 如果 A `k p ≥ 0 且 A `k′ p
′ ≥ 0，那么 A `max(k,k′) p+ p′ ≥ 0。

事实 2.3. 单变量多项式 p(x) 如果是非负的（即 ∀x ∈ R, p(x) ≥ 0），则它一定是 SOS。
即 `deg(p) p(x) ≥ 0。

事实 2.4. 齐次双变量多项式 p(x, y) 如果是非负的，则它一定是 SOS。这是因为可以通
过去齐次化转化为单变量情形。

这两个事实是我们将复杂不等式转化为 SOS 证明的关键工具：只要能将问题规约
为单变量或齐次双变量的非负性判断，就自动获得了 SOS 证明。

引理 2.5. 设 c ≥ 0 为常数，X 为不定元。那么对于任何 k ∈ N+，X ≥ c `k X
k ≥ ck。

证明. 利用二项式展开：

Xk − ck = (X − c+ c)k − ck =
k∑

i=1

(
k

i

)
ck−i(X − c)i

当 i为偶数时，(X−c)i 是完全平方（SOS）；当 i为奇数时，(X−c)i = (X−c)(X−c)i−1，

其中 (X − c)i−1 是 SOS，且 (X − c) 是给定的非负约束。因此整体可以写成 SOS 形
式。

引理 2.6. 对于任何 k ∈ N+，我们有 `2k (
X+Y

2
)2k ≤ X2k+Y 2k

2
。

证明. 多项式 P (X,Y ) = X2k+Y 2k

2
− (X+Y

2
)2k 是一个齐次双变量多项式。根据凸函数

x 7→ x2k 的性质，该多项式在实数域上非负。根据事实 2.4，它是 SOS。

3 SOS 中的正向超压缩不等式
在处理反向超压缩之前，作为热身，我们先给出针对所有偶整数 q 的 (2, q)-超压缩

不等式 ||Tρf ||q ≤ ||f ||2 的 SOS 证明。

3.1 放宽的矩条件

我们的证明实际上适用于满足特定矩条件（Moment Conditions）的一类广泛的随
机变量，而不仅仅是伯努利分布。设 s ∈ N+，我们要求随机变量 xi 满足：

• E[x2
i ] = 1

• E[x2j−1
i ] = 0 （奇数阶矩为 0，即分布对称）
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• E[x2j
i ] ≤ (2s− 1)j

(s
j
)

(2s
2j
)
对于 1 ≤ j ≤ s。

注 3.1. 通过转换为阶乘并展开，可以验证：

(2s− 1)j

(
s
j

)(
2s
2j

) = (2j − 1)!! ·
j−1∏
i=1

2s− 1

2s− (2i+ 1)

由此可见，对于每个固定的 j ∈ N+，该量作为 s 的函数（对于 s ≥ j）递减趋向于极限

(2j − 1)!!，即标准高斯分布的第 (2j) 阶矩。这表明标准高斯分布和均匀随机 ±1 比特都

满足上述所有矩条件。

定理 3.2. 设 x = (x1, ..., xn)是一系列满足 s-矩条件的独立实随机变量。设 f : {−1, 1}n →
R，s ∈ N+，且 0 ≤ ρ ≤

√
1/(2s− 1)。那么

||Tρf(x)||2s ≤ ||f(x)||2

3.2 基础情况：n = 1 的证明

证明. 由于算子 Tρ 和范数具有张量化性质，只需证明 n = 1 的情况。由齐次性，假设

E[f ] = 1。设 f(x1) = 1 + ϵx1，其中 ϵ ∈ R。
我们需要比较 ||Tρf ||2s2s 和 ||f ||2s2 。
首先计算左边：

Tρf(x1) = 1 + ρϵx1

利用二项式定理及奇数阶矩为 0 的性质：

||Tρf ||2s2s = E[(1 + ρϵx1)
2s]

=
2s∑
k=0

(
2s

k

)
(ρϵ)kE[xk

1]

=
s∑

j=0

(
2s

2j

)
ρ2jϵ2jE[x2j

1 ] (仅保留偶数项)

接着计算右边：

||f ||2s2 = (E[(1 + ϵx1)
2])s = (1 + 2ϵE[x1] + ϵ2E[x2

1])
s

= (1 + ϵ2)s (因E[x1] = 0,E[x2
1] = 1)

=
s∑

j=0

(
s

j

)
ϵ2j

现在我们逐项比较 ϵ2j 的系数。我们需要证明对于每个 j：(
2s

2j

)
ρ2jE[x2j

1 ] ≤
(
s

j

)
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即：

E[x2j
1 ] ≤

(
s
j

)(
2s
2j

)ρ−2j

由于 ρ ≤ 1√
2s−1
，即 ρ−2 ≥ 2s− 1，上述条件等价于：

E[x2j
1 ] ≤ (2s− 1)j

(
s
j

)(
2s
2j

)
这正是我们假设的 s-矩条件。因此不等式成立。

3.3 SOS 证明的构造

为了将上述证明转化为 SOS 证明，我们需要处理 n > 1 时的归纳步骤。在标准分

析中，这通常依赖于 Minkowski 不等式，但在 SOS 中我们需要一个多项式版本的替代
引理。

引理 3.3. 设 v 为偶正整数，Gi, Hi 为不定元。那么：

`2v

v∏
i=1

GiHi ≤
1(
v

v/2

) ∑
|T |=v/2

∏
i∈T

G2
i

∏
i∈[v]\T

H2
i


证明. 首先写出恒等式：∏

i∈[v]

GiHi =
1(
v

v/2

) ∑
|T |=v/2

(
∏
i∈T

Gi

∏
i∈[v]\T

Hi)︸ ︷︷ ︸
AT

(
∏

i∈[v]\T

Gi

∏
i∈T

Hi)︸ ︷︷ ︸
BT

对于每一项，应用基本的 SOS 不等式 `2 XY ≤ 1
2
(X2 + Y 2)：

ATBT ≤ 1

2
A2

T +
1

2
B2

T

注意到 A2
T 和 B2

T 对应的正是引理右边的项（只是集合 T 和 [v]\T 互换）。由于求和是对
所有大小为 v/2 的子集 T 进行的，这种互换是对称的。将所有项加起来即可得证。

定理 3.4. 在满足 s-矩条件的前提下，对于 n 变量函数 fi(x)：

`2s E

[
s∏

i=1

(Tρfi(x))
2

]
≤

s∏
i=1

E[fi(x)2]

这里 q = 2s，且 0 ≤ ρ ≤
√
1/(2s− 1)。对每个 x = (x1, . . . , xn)，我们记

fi(x) =
∑
S⊆[n]

f̂i(S)
∏
j∈S

xj, Tρfi(x) =
∑
S⊆[n]

ρ|S|f̂i(S)
∏
j∈S

xj
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证明思路. 对变量数 n 进行归纳。

对于 n ≥ 1，将函数分解为 fi(x) = xngi(x
′) + hi(x

′)，其中 x′ = (x1, . . . , xn−1)。于

是 Tρfi(x) = ρxnTρgi + Tρhi。

展开左边的期望 E[
∏
(ρxnG̃i + H̃i)

2]（其中 G̃ = Tρg）。利用 xn 的独立性和矩条件，

将 xn 的高阶矩替换为常数界。

这会产生混合项 G̃ 和 H̃ 的乘积。利用引理 3.3 将这些混合项解耦为 G̃2 和 H̃2 的

形式。

最后，利用归纳假设处理 n− 1 变量的期望。整个证明的关键在于系数的匹配，这

可以通过组合恒等式来保证最终系数恰好为 1，从而使得右边整理为
∏
(E[g2i ]+E[h2

i ]) =∏
E[f 2

i ]。

4 SOS 中的反向超压缩不等式
本节我们将攻克本文最核心的技术难点：在 SOS系统中证明反向超压缩不等式。这

是解决 Frankl-Rödl 图问题的关键工具。

4.1 主要定理与归纳框架

我们的目标是证明以下关于 2k 次多项式的反向不等式。

定理 4.1. 设 k, n ∈ N+，设 0 ≤ ρ ≤ 1− 1
2k
。对于 {−1, 1}n 上的不定元函数 f(x), g(x)：

`4k E(x,y)∼ρ-corr[f(x)
2kg(y)2k] ≥ E[f ]2kE[g]2k

对于固定的 k，我们对维数 n 进行归纳。

1. 归纳步骤 (n > 1)：利用期望的线性性质，将 n维期望拆解为 n− 1维期望的组合：

E[f(x)2kg(y)2k] =
∑

xn,yn∈{−1,1}

Pr(xn, yn)Ex′,y′ [fxn(x
′)2kgyn(y

′)2k]

其中 fxn 是固定第 n个比特后的限制函数。利用归纳假设，每一项 Ex′,y′ [. . . ]都可

以被下界 E[fxn ]
2kE[gyn ]2k 控制。

2. 基础情况 (n = 1)：此时问题转化为证明一个关于 4 个实变量的代数不等式。这是
证明中最困难的部分。

定理 4.2. 设 k ∈ N+ 且 0 ≤ ρ ≤ 1− 1
2k
。设 F0, F1, G0, G1 为实不定元。那么：

`4k(
1

4
+

1

4
ρ)(F 2k

0 G2k
0 + F 2k

1 G2k
1 )

+(
1

4
− 1

4
ρ)(F 2k

0 G2k
1 + F 2k

1 G2k
0 )

≥ (
F0 + F1

2
)2k(

G0 +G1

2
)2k
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目标不等式关于 ρ是线性的。因此，只需证明端点情况 ρ = 0和 ρ∗ = 1− 1
2k
成立即

可。ρ = 0 的情况是平凡的。因此我们只需关注 ρ = ρ∗。通过代换 µ = (F0 + F1)/2, α =

(F0 − F1)/2 ，ν = (G0 +G1)/2, β = (G0 −G1)/2，我们将定理 4.2 转化为证明以下多项
式非负性：

`4k(
1

4
+

1

4
ρ∗)((µ+ α)2k(ν + β)2k + (µ− α)2k(ν − β)2k)

+(
1

4
− 1

4
ρ∗)((µ+ α)2k(ν − β)2k + (µ− α)2k(ν + β)2k)

≥ µ2kν2k

再通过齐次性，我们可以令 µ = ν = 1。我们只需要证明以下“两点不等式”在 SOS 系
统中成立：

(两点不等式 Pk(a, b)). 设 ρ∗ = 1− 1
2k
，那么：

`4k Pk(a, b) :=

(
1

4
+

1

4
ρ∗
)[

(1 + a)2k(1 + b)2k + (1− a)2k(1− b)2k
]

+

(
1

4
− 1

4
ρ∗
)[

(1 + a)2k(1− b)2k + (1− a)2k(1 + b)2k
]
− 1 ≥ 0

4.2 关键技术：计算机代数辅助证明

如何证明 Pk(a, b) 是 SOS？直接构造平方和极其困难。我们采用了一种基于变量代
换和计算机代数的策略。令：

r = a− b, s = a+ b, t = ab

利用恒等式 1
2
((c + d)2k + (c − d)2k) =

∑(
2k
2i

)
c2k−2id2i，并将 r2 替换为 s2 − 4t，我们可

以将 Pk(a, b) 重写为关于 s2 的多项式：

Pk(a, b) = −1 +
k∑

i=0


(
1

2
+

1

2
ρ∗)

(
2k

2i

)
(1 + t)2k−2i+

(
1

2
− 1

2
ρ∗)

k∑
j=i

(
2k

2j

)
(1− t)2k−2j

(
j

i

)
(−4t)j−i

 s2i

= Qk,0(t) +Qk,1(t)s
2 +Qk,2(t)s

4 + · · ·+Qk,k(t)s
2k

其中 Qk,i(t) 是仅依赖于 t 的单变量多项式。

如果我们能证明对于所有的 i，系数多项式 Qk,i(t) 在实数域上非负，那么根据事实

2.4，每个 Qk,i(t) 都是 SOS。由于 s2i 显然也是 SOS，那么 Pk(a, b) 作为 SOS 的线性组
合，必然也是 SOS。

命题 4.3. 对于每个 k ∈ N+（且 ρ∗ = 1− 1
2k
），多项式 Qk,0(t) 是非负的。
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这是最复杂的一项。我们利用 Zeilberger 算法来寻找 Qk,0(t)的结构。重写 Qk,0(t)

得到：

Qk,0(t) = −1 + (1 + t)2k

(
1− 1

4k
+

1

4k

k∑
j=0

(
2k

2j

)
(1− t)2k−2j

(1 + t)2k
(−4t)j

)

我们将括号中的求和部分记为 Sk(t)，计算机算法发现 Qk,0(t) 包含的部分和满足一个二

阶线性递推关系：

(t+ 1)2Sk+2(t)− 2(t2 − 6t+ 1)Sk+1(t) + (t+ 1)2Sk(t) = 0

解该递推关系得到闭式解：

Qk,0(t) = −1 + (1 + t)2k
(
1− 1

4k
+

1

4k
cos
(
4k arctan(

√
t)
))

利用 (1 + t)2k ≥ 1 + 2kt，我们只需证明：

−1 + (1 + 2kt)

(
1− 1

4k
+

1

4k
cos(4k arctan(

√
t))

)
≥ 0

我们分情况讨论：

• t ≥ 1
2k(2k−1)

：利用 cos(·) ≥ −1 即可证明。

• t < 1
2k(2k−1)

：我们使用 Taylor 展开估计余弦函数：

cos(x) ≥ 1− x2

2
+

x4

24
− x6

720

将 x = 4k
√
t ∈

(
4k arctan(

√
t), π

)
代入并展开，我们得到一个关于 t 的二次多项

式 q(t)。通过验证该二次多项式的判别式及端点值，我们严格证明了在该微小区

间内 Qk,0(t) ≥ 0。

命题 4.4. 对于所有 1 ≤ i ≤ k ∈ N+，多项式 Qk,i(t) 是非负的（其中 ρ∗ = 1− 1
2k
）。

证明. 事实上，我们将证明一个更强的结论：即使当 ρ∗ 设为 0 时，每个 Qk,i(t) 也是非

负的。即，我们将证明：

Q̃k,i(t) :=
1

2

(
2k

2i

)
(1 + t)2k−2i +

1

2

k∑
j=i

(
2k

2j

)
(1− t)2k−2j

(
j

i

)
(−4t)j−i

是非负的。之所以说这是更强的结论，是因为 Qk,i(t) 和 Q̃k,i(t) 是相同两个主要量的凸

组合，但 Q̃k,i(t) 在显然非负的第一项
(
2k
2i

)
(1 + t)2k−2i 上的“权重”更小（系数为 1/2，

而 Qk,i(t) 中该项系数为
1
2
+ 1

2
ρ∗ > 1/2）。

手工证明这一点并不容易，但利用计算机辅助可以得到一个紧凑的证明。可以验证

以下递推关系对所有整数 0 ≤ i ≤ k 成立：

(1 + i)(1 + k)Q̃k+2,i+1(t) = (1 + i)(2 + k)(1 + t)2Q̃k+1,i+1(t) + (2 + k)(2 + 2k − i)Q̃k+1,i(t)

11



这是通过猜测多项式递推的形式并通过计算机求解得到的。鉴于此，我们只需证明 k = i

和 i = 0 两种情况下的 Q̃k,i(t) ≥ 0；一般 k 和 i 的非负性则由归纳法得出。

对于 k = i，我们有 Q̃k,k(t) = 1 ≥ 0。

对于 i = 0，非负性的证明与命题 4.3 类似，但更简单。
对于 t < 0，由定义显然可知 Q̃k,0(t) 是非负的（因为各项均为正或平方项）。

对于 t ≥ 0，命题 4.3 的证明过程给出了：

Q̃k,0(t) =
1

2
(1 + t)2k

(
1 + cos(4k arctan(

√
t))
)
≥ 0

上式显然成立。

5 SOS 中的 Frankl-Rödl 定理
本节展示我们工作在 3-染色和顶点覆盖问题上的应用。具体而言，我们给出了

Frankl-Rödl 定理的一个低阶 SOS 证明，即证明 Max− IS(FRn
γ ) < o(1)。

5.1 Frankl-Rödl 定理

我们首先陈述关于 Frankl-Rödl 图独立集大小的主要 SOS 结论。

定理 5.1. 设 n ∈ N+ 且 1
logn

≤ γ ≤ 1
4
，使得 (1 − γ)n 为偶整数。给定 Frankl-Rödl 图

FRn
γ = (V,E)，对于每个 x ∈ V = {−1, 1}n，设 f(x) 为一个不定元。那么，存在一个

度数为 4d 1
4γ
e 的 SOS 反驳，针对表达“Max− IS(G) ≥ O(n−γ/10)”的系统；即系统：

f(x)2 = f(x) ∀x ∈ V,

f(x)f(y) = 0 ∀(x, y) ∈ E,

1

|V |
∑
x∈V

f(x) ≥ Cn−γ/10

 `4⌈ 1
4γ

⌉ −1 ≥ 0

其中 C 是常数。

该定理表明，NO(1/γ)时间复杂度的 SOS/Lasserre层级算法能够证明Max−IS(FRn
γ ) ≤

O(n−γ/10)。特别地，对于 γ = 1/4，4 阶 SOS 算法即可证明 χ(FRn
1/4) = ω(1)。这比

Charikar 之前针对 SDP 的结果要强。

定理 5.2. 固定 0 < γ < 1/2 和 0 < α ≤ 1。在图 FRn
γ 中，如果 S ⊆ V 满足 |S|/2n ≥ α，

那么：

Pr(x,y)∼E[x ∈ S, y ∈ S] ≥ 2(α/2)1/γ − on(1)

这表明任何大小为 α2n 的顶点集 S 都包含至少 2(α/2)1/γ − on(1) 的边比例。因此，

独立集的大小至多为 O(n−γ/10)。
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5.2 定义

为了将图的组合性质转化为分析性质，我们需要引入平滑算子。

定义 5.3. 对于整数 0 ≤ d ≤ n，算子 Sd 作用于函数 f : {−1, 1}n → R 上，定义为
Sdf(x) = Ey[f(y)]，其中 y 是在满足 ∆(x, y) = d 的条件下均匀随机选取的。

直观上，Sd 算子应该表现得像噪声算子 Tρ（其中 ρ = 1− 2d/n）。然而，这里存在

一个“奇偶性”问题：如果 d 是奇数，则 Sd 映射到的 y 与 x 奇偶性相反；如果 d 是偶

数，则相同。而噪声算子 Tρ 是混合的，不区分奇偶。为了解决这个问题，我们需要定

义一个混合算子：

定义 5.4. 对于整数 0 ≤ d < n，定义算子 S ′
d =

1
2
Sd +

1
2
Sd+1。

下面的定理展示了 S ′
d 与 Tρ 的近似关系，这是连接图论属性与超压缩不等式的桥

梁：

定理 5.5. 设 f : {−1, 1}n → R。设 d = n − c 对于某个整数 c2
√
n ≤ c ≤ n/2。令

ρ = 1− 2d/n。那么：

〈f, S ′
df〉 − 〈f, Tρf〉 =

∑
U⊆[n]

f̂(U)2 · δ(U)

其中误差项 δ(U) 满足 ‖δ(U)‖∞ ≤ O(max{n−1/5, n
c2

log2( c
2

n
)})。

5.3 定理 5.1 的证明

证明. 记 d = (1 − γ)n，并记 ρ′ = 1 − 2d/n = −(1 − 2γ)。我们将函数 f 根据汉明权重

的奇偶性分解为 f0 和 f1：

fi(x) =

f(x) 若x 的汉明权重模 2 等于i

0 否则

由于我们假设 d = (1 − γ)n 为偶数，如果 x 和 y 的汉明权重奇偶性相同，则它们的距

离只能是 d（偶数）而不能是 d+ 1（奇数）。

由图的独立集约束 {f(x)f(y) = 0, ∀∆(x, y) = d}，我们有：

`2 〈f0, S ′
df0〉+ 〈f1, S ′

df1〉 = 0

这是因为 S ′
d 包含 Sd 和 Sd+1 两部分。对于 〈fi, Sdfi〉，由于 f(x)f(y) = 0 (当距离为 d)，

该项为 0。对于 〈fi, Sd+1fi〉，由于 Sd+1 连接不同奇偶性的点，而 fi 仅在特定奇偶性上

非零，该内积本身恒为 0。
接下来利用定理 5.5，我们可以将 S ′

d 替换为噪声算子 Tρ′：

`2 〈f0, Tρ′f0〉+ 〈f1, Tρ′f1〉 ≤ δ
∑
U

f̂0(U)2 + δ
∑
U

f̂1(U)2 = δE[f 2]
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其中误差项 δ 是 n 的负次幂，趋近于 0。
为了使用反向超压缩不等式，我们需要正相关的噪声算子。定义 gi(x) = fi(−x)，并

令 ρ = −ρ′ = 1 − 2γ。此时有 〈fi, Tρ′fi〉 = 〈fi, Tρgi〉 = E(x,y)∼ρ-corr[fi(x)gi(y)]。于是我们

得到：

E[f0(x)g0(y)] + E[f1(x)g1(y)] ≤ δE[f 2]

现在我们将度数提升到 2k，其中 k = d 1
4γ
e ≥ 1。利用布尔约束 f(x)2 = f(x)，我们

有 `2k f(x)
2k = f(x)。因此上述不等式可以写为：

E[f0(x)2kg0(y)2k] + E[f1(x)2kg1(y)2k] ≤ δE[f ]

注意到 ρ = 1 − 2γ ≤ 1− 1
2k
，这满足了反向超压缩定理 4.1 的条件。应用定理 4.1，

我们得到：

E[f0]2kE[g0]2k + E[f1]2kE[g1]2k ≤ E[f0(x)2kg0(y)2k] + E[f1(x)2kg1(y)2k] ≤ δE[f ]

对于 i = 0, 1，形式上有 E[fi] = E[gi]。利用引理 2.6 的凸性：

E[f0]4k + E[f1]4k ≥ 2

(
E[f0] + E[f1]

2

)4k

= 2(E[f ]/2)4k

因此推导出：

24k−1δ ≥ E[f ]4k

最后，结合假设 1
|V |
∑

f(x) ≥ Cn−γ/10。利用引理 2.5：

E[f ] ≥ Cn−γ/10 `4k E[f ]4k ≥ C4kn−4kγ/10 ≥ C4kn−1/5

只要常数 C 足够大，使得 C4kn−1/5 > 24k−1δ，我们就得到了矛盾。

6 结论

• 关于反向超压缩性：我们可能还没有给出 SOS 两点不等式的 Book proof。是否有
一种计算机代数技术，能够符号化地、自动地证明所有 k 的 SOS 性质。

• 关于 Frankl-Rödl 定理：Benabbas-Hatami-Magen 的证明是否可以改进以适用于
更小的 γ，例如

√
logn
n
？

• 一个有趣的问题：超立方体的顶点等周不等式意味着：如果 A,B ⊆ {−1, 1}n 且
dist(A,B) ≥

√
n logn，那么 |A||B|/4n 必须非常小。这个事实是否有 O(1) 度数的

SOS 证明？
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