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1 引言

Helmholtz 方程是数学物理中描述波动现象的基本方程，在声学、电磁学、量子力
学等领域有广泛应用。本报告研究二维 Helmholtz 特征值问题的数值解法，包括数学推
导、有限差分离散化、基础求解器实现（幂法和反迭代法）、高级方法（Lanczos 算法和
Rayleigh 商迭代）以及数值实验分析。

2 离散化

考虑二维 Helmholtz 特征值问题：

−∆u = λu 在 Ω = [0, 1]× [0, 1] (1)

带有 Dirichlet 边界条件：u|∂Ω = 0。

我们采用均匀网格离散化的方法：取网格间距 ∆x = ∆y = h = 1
N+1
。内部点数共

N2 个。利用五点差分格式，对拉普拉斯算子进行近似：

−∆ui,j ≈
4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
(2)

令 U 为按行优先排列的未知向量，离散化后的特征值问题转化为代数方程：

Au = λu (3)

其中 A ∈ RN2×N2
是稀疏对称矩阵，具有分块三对角结构：

A =
1

h2
(IN ⊗D2 +D2 ⊗ IN) (4)

其中 D2 = tridiag(−1, 2,−1) 是 N ×N 的一维拉普拉斯矩阵。

3 基础求解器实现

3.1 幂法 (Power Method)

幂法用于求解模最大的特征值。收敛速度取决于最大特征值与次大特征值的比值。

1 function [lambda, v, iter_log] = power_method_algorithm(A, tol, max_iter)
2 n = size(A, 1);
3 v = randn(n, 1); v = v / norm(v);
4 iter_log = [];
5 for k = 1:max_iter
6 w = A * v;
7 v_new = w / norm(w);
8 lambda = v_new' * A * v_new;
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9 iter_log = [iter_log; lambda];
10 if norm(v_new - v) < tol, break; end
11 v = v_new;
12 end
13 end

Listing 1: 幂法

3.2 反迭代法 (Inverse Iteration)

反迭代法用于求解最接近给定值 µ 的特征值。利用 LU 分解预处理，其收敛速度通
常为线性，但在特征值附近收敛较快。

1 function [lambda, v, iter_log] = inverse_iteration(A, mu, tol, max_iter)
2 n = size(A, 1);
3 v = randn(n, 1); v = v / norm(v);
4 [L, U, P, Q] = lu(A - mu * speye(n));
5 iter_log = [];
6 for k = 1:max_iter
7 w = Q * (U \ (L \ (P * v)));
8 v_new = w / norm(w);
9 lambda = v_new' * A * v_new;

10 iter_log = [iter_log; lambda];
11 if norm(v_new - v) < tol, break; end
12 v = v_new;
13 end
14 end

Listing 2: 反迭代法

4 高级求解器实现

经典的算法倾向于收敛到模最大的特征值。然而，在物理问题中，我们通常关注最

小特征值。此外，为了获得极高精度的单个特征值，我们需要更快的局部收敛算法。

4.1 Shift-and-Invert Lanczos 算法

Lanczos 算法是一种迭代方法，用于求解大规模稀疏矩阵的特征值问题和线性方程
组。该算法由 Cornelius Lanczos在 1950年提出，是 Krylov子空间方法的重要代表。该
算法通过构造一个三对角矩阵，将原矩阵的特征值问题转化为更容易求解的形式。

设 A 是 n 阶实对称矩阵。Lanczos 方法通过从一个随机选取的初始向量 b0 开始，

构建一个子空间 Sj = span(b0, b1, . . . , bj) 。在每一步迭代中，新向量 bj+1 的生成过程
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可以看作是将 Abj 投影到已知子空间 Sj 上，然后去除该投影分量，从而得到与之前所

有向量正交的新向量。

不同于一般的正交化过程需要与所有之前的向量进行运算，Lanczos 的天才发现在
于：对于对称矩阵，每一步迭代只需要通过三项递归式即可保证正交性。

设第 j 步得到的向量为 bj，我们构建下一个向量 bj+1 为 Abj 与前两项的线性组合：

bj+1 = Abj − αjbj − βj−1bj−1

其中系数 αj 和 βj−1 的选取原则是使新向量 bj+1 的模长最小。由此推导出的系数

计算公式为：

αj =
(Abj)bj

b2
j

, βj−1 =
(Abj)bj−1

b2
j−1

经过 n 步迭代（或在 m < n 步提前终止），我们将得到一组双正交向量 B =

[b0, b1, . . . , bn−1]，使得原矩阵 A 被转化为三对角矩阵 T：

T = (B∗)TAB =


α0 β0

β0 α1 β1

β1
. . . . . .
. . . αn−1


此时，T 的特征值即为原矩阵 A 的特征值近似解。
根据上述推导，我们给出 Lanczos 算法的具体步骤如下：

• 初始化：随机选取初始向量 b0。

• b1 = Ab0 − α0b0, 其中α0 =
(Ab0)b0

b2
0

• 对于 j = 1, 2, . . .，执行以下步骤：

• bj+1 = Abj − αjbj − βj−1bj−1

• αj =
(Abj)bj

b2
j

, βj−1 =
b2
j

b2
j−1

• 终止条件：当 βj = 0 时，迭代结束，此时达到了最小多项式的秩。

1 function [evals, T, B] = lanczos_solver(A, v0, m)
2 n = size(A, 1);
3 B = zeros(n, m); alpha = zeros(m, 1); beta = zeros(m-1, 1);
4 b_curr = v0 / norm(v0); B(:, 1) = b_curr; b_prev = zeros(n, 1);
5 beta_prev = 0;
6 for j = 1:m
7 u = A * b_curr;
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8 alpha(j) = b_curr' * u;
9 r = u - alpha(j) * b_curr - beta_prev * b_prev;

10 if j < m
11 beta_curr = norm(r);
12 if beta_curr < 1e-10, break; end
13 beta(j) = beta_curr;
14 b_next = r / beta_curr;
15 B(:, j+1) = b_next; b_prev = b_curr; b_curr = b_next;
16 beta_prev = beta_curr;
17 end
18 end
19 T = diag(alpha) + diag(beta, 1) + diag(beta, -1);
20 evals = sort(eig(T));
21 end

Listing 3: Lanczos

4.2 瑞利商迭代 (RQI)

瑞利商迭代（Rayleigh Quotient Iteration）是一种寻找单个特征值的高效算法。其
核心思想是在反幂法的基础上，利用当前的瑞利商作为位移。具体步骤如下：

• 计算瑞利商：µk =
vTk Avk
vTk vk

• 求解线性方程组：(A − µkI)wk+1 = vk

• 归一化：vk+1 = wk+1/∥wk+1∥

对于对称矩阵，RQI 具有立方收敛速度，即误差以 ϵk+1 ≈ Cϵ3k 的速度下降。

1 function [lambda, v, iter_log] = rqi_solver(A, v0, tol, max_iter)
2 n = size(A, 1);
3 I = speye(n);
4 v = v0 / norm(v0);
5 lambda = v' * A * v;
6 iter_log = [];
7 for k = 1:max_iter
8 iter_log = [iter_log; lambda];
9 residual = norm(A * v - lambda * v);

10 if residual < tol, break; end
11 try
12 w = (A - lambda * I) \ v;
13 catch
14 w = (A - (lambda + 1e-8) * I) \ v;
15 end



6

16 v = w / norm(w);
17 lambda = v' * A * v;
18 end
19 end

Listing 4: RQI

5 理论复杂度分析

5.1 时间复杂度分析

5.1.1 幂法

幂法的计算核心在于单步迭代的累积开销与总迭代次数的乘积。在每一次迭代

中，主要运算包括稀疏矩阵-向量乘法、向量归一化以及 Rayleigh 商的计算。针对二
维 Helmholtz 方程的五点差分格式，离散矩阵 A ∈ Rn×n（其中 n = N2）每行仅有 5 个
非零元素。因此，SpMV 操作仅需 5N2 次浮点运算。加上向量归一化（2N2）、Rayleigh
商计算（利用中间结果仅需 N2）以及收敛性检查（N2），单步迭代的总计算量约为 9N2，

即具有 O(N2) 的线性复杂度。

然而，幂法的总耗时受限于其收敛速度。收敛率由主特征值与次大特征值的比值

ρ = |λ2/λ1| 决定。对于 Helmholtz 问题，ρ 通常接近于 1（例如 0.9 ∼ 0.98），导致收敛

缓慢。为达到预设精度 ε，所需迭代次数 k 满足 k ≈ O(log(1/ε))。综上所述，幂法的总
时间复杂度为 Tpower(N) = O(N2 log(1/ε))。

5.1.2 反迭代法

反迭代法通过引入位移 µ 显著加速了收敛，但其代价是将简单的矩阵乘法转变为

求解线性方程组 (A− µI)w = v。该算法的整体复杂度取决于线性方程组求解器的选择：

若采用直接法（如针对带状矩阵的 LU 分解），由于矩阵带宽为 N，初始的分解过

程需要 O(N4) 的运算量。分解完成后，每次迭代中的前向和回代求解仅需 O(N3)。

若采用迭代法（如预条件共轭梯度法 PCG），位移后的矩阵 A − µI 条件数通常较

差（κ ≈ O(N2)），导致 PCG 内部需要 O(N) 次迭代才能收敛。因此，反迭代法外部的

每一步实际上消耗了 O(N ·N2) = O(N3) 的计算量。

尽管单步成本较高，但反迭代法在 µ 接近特征值时表现出二次收敛特性，通常仅需

极少的步数即可收敛。因此，其总复杂度通常由求解线性方程组的开销主导。

5.1.3 Lanczos 算法

在单步迭代中，Lanczos 同样以稀疏矩阵-向量乘法（SpMV）为核心，基础开销与
幂法相当（O(N2)）。Lanczos 算法通常仅需较小的子空间维数（m ≪ N）即可精确逼近
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矩阵谱边缘的特征值（基态或高频态）。最后对 m×m 三对角矩阵求解特征值的开销仅

为 O(m3)，相对于大规模矩阵运算可忽略不计。因此，Lanczos 算法的总时间复杂度约
为 O(mN2)。它在保持线性复杂度的同时，能比幂法提取更多的谱信息。

5.1.4 瑞利商迭代

瑞利商迭代是反迭代法的变体，其位移量 λk 在每一步都会动态更新。单步开销是

RQI 的主要瓶颈。由于位移 λk 随迭代变化，每一步都必须重新进行矩阵分解。若使用

直接法，单步代价高达 O(N4)（分解）或 O(N3)（求解）。

然而，RQI 的优势在于其惊人的立方收敛速度。对于实对称矩阵，通常仅需 3 ∼ 5

步即可达到机器精度。极少的迭代次数弥补了昂贵的单步开销。因此，RQI 非常适合在
Lanczos 算法提供良好的初始猜测后，用于特征值的高精度计算。

5.2 空间复杂度分析

空间复杂度的分析主要考量矩阵存储与求解过程中的辅助空间。

对于矩阵 A，利用压缩稀疏行（CSR）格式存储仅需 O(N2) 空间，这远优于稠密格

式的 O(N4)，是处理大规模网格的关键。基础向量存储同样维持在 O(N2) 级别。

1. 幂法与 RQI：仅需存储当前迭代向量和辅助向量，空间复杂度最低，为 O(N2)。

但需注意，若 RQI 使用直接求解器，动态 LU 分解产生的填充元可能导致瞬时空
间峰值达到 O(N3)。

2. 反迭代法：若使用直接法，LU 分解因子的存储需求为 O(N3)，是内存瓶颈所在。

3. Lanczos 算法：为了在最后一步还原 Ritz 向量（近似特征向量），必须存储整个
Krylov 子空间的基底 B ∈ RN2×m。随着迭代步数 m 的增加，其空间需求线性增

长。这是 Lanczos 算法相对于幂法的主要内存代价。

表 1: 算法对比 (N 为网格边长，矩阵维数 n = N2)

算法 单步时间复杂度 收敛速度 总空间复杂度 适用场景

幂法 (稀疏) O(N2) 线性 O(N2) 获取模最大特征值

幂法 (稠密) O(N4) 线性 O(N4) 不实用

反迭代 (直接法) O(N3) 线性 O(N3) 中小规模，求特定特征值

反迭代 (PCG) O(N3) 线性 O(N2) 超大规模，内存受限时

Lanczos O(N2) 超线性 O(mN2) 快速获取谱边缘概况

RQI O(N3) 立方 O(N3) 单特征值高精度计算
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6 数值实验与结果分析

6.1 实验 1：正确性验证与物理模态

我们首先在 N = 40 的网格上验证算法的正确性。图 1 展示了通过 Lanczos 算法计
算得到的基态和最高频模态。基态呈现出光滑的单峰结构。通过与 MATLAB内置 eigs
函数对比（表 2），绝对误差极小，验证了算法实现的正确性。

图 1: Lanczos 算法计算得到的基态（左）与高频态（右）波形图

表 2: Lanczos 计算值与标准值的对比（采用最近邻匹配）

特征值类型 Lanczos (计算值) 真值 (eigs) 绝对误差

低频/基态部分
基态 +0 19.729553 19.729553 1.67e-12
基态 +1 49.265992 49.265992 1.27e-12
基态 +2 49.265992 49.265992 1.49e-12
基态 +3 78.802431 78.802431 1.05e-10
基态 +4 98.300761 98.300761 2.66e-08
基态 +5 98.300761 98.300761 2.66e-08

高频/最大部分
最大-5 13349.699239 13349.699239 4.93e-09
最大-4 13349.699239 13349.699239 5.01e-09
最大-3 13369.197569 13369.197569 2.00e-11
最大-2 13398.734008 13398.734008 1.82e-11
最大-1 13398.734008 13398.734008 7.28e-12
最大-0 13428.270447 13428.270447 6.18e-11
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6.2 实验 2：时间复杂度分析

我们测试了从 N = 20 到 N = 200 不同网格规模下 Lanczos 算法的运行时间。结果
如图 2 所示。运行时间与 O(N2) 相近，表明算法的线性复杂度非常适合大规模问题。

图 2: 算法运行时间与矩阵自由度的关系

6.3 实验 3：RQI 收敛速度测试

图 3 展示了瑞利商迭代的立方收敛特征。

图 3: 瑞利商迭代的立方收敛性

6.4 实验 4：算法综合对比

• 求最大特征值：Lanczos 算法的收敛速度显著快于幂法，表现出超线性收敛特征。

• 求特定特征值：RQI 的收敛速度远超反迭代法，后者仅表现为线性收敛。
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图 4: 对比：(左) 幂法 vs Lanczos；(右) 反迭代 vs RQI

7 结论

本项目成功实现并比较了求解二维 Helmholtz 方程特征值问题的多种数值算法。实
验结果表明：Lanczos 与 RQI 算法在收敛阶数和计算效率上均优于幂法与反迭代法。实
际应用中，建议使用 Lanczos 快速定位，再结合 RQI 进行精确计算。
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