
Homework Assignment 3

Problem 1. (15 points)
Consider the class of problems

minimize
x

f(x)

subject to x ∈ X, gj(x) ≤ uj, j = 1, . . . , r,

where u = (u1, . . . , ur) is a vector parameterizing the right-hand side of the constraints.
Given two distinct values ū and ũ of u, let f̄ and f̃ be the corresponding optimal values,
and assume that f̄ and f̃ are finite. Assume further that µ̄ and µ̃ are corresponding dual
optimal solutions and that there is no duality gap. Show that

µ̃′(ũ− ū) ≤ f̄ − f̃ ≤ µ̄′(ũ− ū).

Solution 1
D(µ) = inf

x∈X
{f(x) + µ′g(x)} .

q(µ, u) = inf
x∈X

{f(x) + µ′(g(x)− u)} = D(µ)− µ′u.

f̄ = p(ū) = sup
µ≥0

(D(µ)− µ′ū) = D(µ̄)− µ̄′ū

f̃ = p(ũ) = sup
µ≥0

(D(µ)− µ′ũ) = D(µ̃)− µ̃′ũ

where µ̄ and µ̃ is the corresponding dual optimal solutions. We have:

f̄ = D(µ̄)− µ̄′ū ≥ D(µ̃)− µ̃′ū = (f̃ + µ̃′ũ)− µ̃′ū = f̃ + µ̃′(ũ− ū).

=⇒ µ̃′(ũ− ū) ≤ f̄ − f̃ .

Otherside is similar.

1



Problem 2. (15 points)
Let gj : R

n 7→ R, j = 1, . . . , r, be convex functions over the nonempty convex subset of Rn.
Show that the system

gj(x) < 0, j = 1, . . . , r,

has no solution within X if and only if there exists a vector µ ∈ Rr such that
r∑

j=1

µj = 1, µ ≥ 0,

µ′g(x) ≥ 0, ∀x ∈ X.

Hint: Consider the convex program
minimize

x,y
y

subject to x ∈ X, y ∈ R, gj(x) ≤ y, j = 1, . . . , r,
(1)

Solution 2 Consider the convex program
minimize

x,y
y

subject to x ∈ X, y ∈ R, gj(x) ≤ y, j = 1, . . . , r,
(2)

Let v∗ be the optimal value of this problem. The system gj(x) < 0 for j = 1, . . . , r has no
solution in X if and only if for all x ∈ X, maxj gj(x) ≥ 0. This implies that the optimal
value of the auxiliary problem satisfies v∗ ≥ 0.

Now, consider the Lagrangian of the auxiliary problem:

L(x, y, λ) = y +
r∑

j=1

λj(gj(x)− y) = y

(
1−

r∑
j=1

λj

)
+

r∑
j=1

λjgj(x).

The dual function:

q(λ) = inf
x∈X,y∈R

L(x, y, λ) =

{
infx∈X

∑r
j=1 λjgj(x) if

∑r
j=1 λj = 1,

−∞ otherwise.

Maximize q(λ) subject to λ ≥ 0 equivalent to:
maximize

λ
infx∈X λ′g(x)

subject to
∑r

j=1 λj = 1, λ ≥ 0.

Let d∗ be the dual optimal value. Then v∗ = d∗. So

v∗ ≥ 0 ⇐⇒ d∗ ≥ 0 ⇐⇒ sup
λ≥0∑
λj=1

(
inf
x∈X

λ′g(x)

)
≥ 0.

Since the feasible set for λ is compact, the supremum is attained by some vector µ. Thus,
the condition is equivalent to the existence of µ ∈ Rr such that:

r∑
j=1

µj = 1, µ ≥ 0, and inf
x∈X

µ′g(x) ≥ 0.
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Problem 3. (25 points)
Consider the problem

minimize
x

f(x)

subject to x ∈ X, gi(x) ≤ 0, i = 1, · · · , r,

where X is a convex set, and f and gjs are convex over X. Assume that the problem has at
least one feasible solution. Show that the following are equivalent.

(i) The dual optimal value q∗ = supµ∈Rr q(µ) is finite.
(ii) The primal function p is proper.
(iii) The set

M =
{
(u,w) ∈ Rr+1 | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w

}
does not contain a vertical line.

Solution 3 The primal function defined as:

p(u) = inf{f(x) | x ∈ X, g(x) ≤ u}.

We have p(0) < ∞, and p(u) is not identically +∞.
(ii) ⇐⇒ (iii): If p is proper, then p(u) > −∞ for all u. Therefore, there is no u for

which (u,w) ∈ M for all w. Thus, M does not contain a vertical line. Conversely, if M
does not contain a vertical line, then for every u, the values of w such that (u,w) ∈ M are
bounded below. Thus p(u) > −∞ for all u. Since p is not identically +∞, p is proper.

(ii) =⇒ (i): If p is proper and convex, the conjugate of a proper convex function is
proper. By Weak Duality, q(µ) ≤ p(0). Since p is proper and a feasible solution exists, p(0)
is finite. Thus sup q(µ) ≤ p(0) < ∞.

(i) =⇒ (ii): If q∗ = sup q(µ) is finite, then q(µ) > −∞ for some µ. Suppose p is not
proper. Since feasible solutions exist, this means there exists ū such that p(ū) = −∞. Then,
for any µ ≥ 0:

q(µ) ≤ inf
x
{f(x) + µ′g(x)} ≤ p(ū) + µ′ū = −∞.

This contradicts the assumption that q∗ > −∞. Thus, p must be proper.
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Problem 4. (25 points)
Consider a proper convex function F of two vectors x ∈ Rn and y ∈ Rm. For a fixed
(x̄, ȳ) ∈ dom(F ), let ∂xF (x̄, ȳ) and ∂yF (x̄, ȳ) be the subdifferentials of the functions F (·, ȳ)
and F (x̄, ·) at x̄ and ȳ, respectively.

(a) Show that
∂F (x̄, ȳ) ⊂ ∂xF (x̄, ȳ)× ∂yF (x̄, ȳ)

and give an example showing that the inclusion may be strict in general.
(b) Assume that F has the form

F (x, y) = h1(x) + h2(y) + h(x, y),

where h1 and h2 are proper convex functions, and h is convex, real-valued, and differentiable.
Show that the formula of part (a) holds with equality.

Solution 4 (a) Let (u, v) ∈ ∂F (x̄, ȳ). By the definition:

F (x, y) ≥ F (x̄, ȳ) + u′(x− x̄) + v′(y − ȳ), ∀x, y.

Set y = ȳ:
F (x, ȳ) ≥ F (x̄, ȳ) + u′(x− x̄).

This implies u ∈ ∂xF (x̄, ȳ). Similarly we have v ∈ ∂yF (x̄, ȳ). Thus, ∂F (x̄, ȳ) ⊂ ∂xF (x̄, ȳ)×
∂yF (x̄, ȳ).

Example: Consider F (x, y) = |x+y| at (x̄, ȳ) = (0, 0). The subdifferential of F at (0, 0)
consists of vectors (u, v) such that |x + y| ≥ ux + vy. This holds if and only if u = v and
|u| ≤ 1. Thus, ∂F (0, 0) = {(u, u) | −1 ≤ u ≤ 1}. But

F (x, 0) = |x| =⇒ ∂xF (0, 0) = [−1, 1]

F (0, y) = |y| =⇒ ∂yF (0, 0) = [−1, 1]

=⇒ ∂F (0, 0) ⊊ ∂xF (0, 0)× ∂yF (0, 0) = [−1, 1]× [−1, 1].

(b) Let F (x, y) = h1(x) + h2(y) + h(x, y), we have:

∂F (x, y) = ∂(h1(x) + h2(y)) +∇h(x, y).

Since h1 depends only on x and h2 only on y:

∂(h1(x) + h2(y)) = ∂h1(x)× ∂h2(y).

Also, ∇h(x, y) = (∇xh(x, y),∇yh(x, y)). Thus:

∂F (x̄, ȳ) = {(u1 +∇xh(x̄, ȳ), u2 +∇yh(x̄, ȳ)) | u1 ∈ ∂h1(x̄), u2 ∈ ∂h2(ȳ)} .

And:
∂xF (x̄, ȳ) = ∂x(h1(x) + h2(ȳ) + h(x, ȳ)) = ∂h1(x̄) +∇xh(x̄, ȳ),

∂yF (x̄, ȳ) = ∂y(h1(x̄) + h2(y) + h(x̄, y)) = ∂h2(ȳ) +∇yh(x̄, ȳ).

So:
∂xF × ∂yF = (∂h1(x̄) +∇xh)× (∂h2(ȳ) +∇yh) = ∂F (x̄, ȳ).
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Problem 5. (20 points)
(Note: This exercise shows how a duality gap results in nondifferentiability of the dual
function.)

Consider the problem

minimize
x

f(x)

subject to x ∈ X, g(x) ≤ 0,

and assume that for all µ ≥ 0, the infimum of the Lagrangian L(x, µ) over X is attained
by at least one xµ ∈ X. Show that if there is a duality gap, then the dual function q(µ) =
infx∈X L(x, µ) is nondifferentiable at every dual optimal solution.
Hint: If q is differentiable at a dual optimal solution µ∗, by the theory of Section 5.3 in the
textbook, we must have ∂q (µ∗) /∂µj ≤ 0 and µ∗

j∂q (µ
∗) /∂µj = 0 for all j. Use optimality

conditions for µ∗, together with any vector xµ∗ that minimizes L (x, µ∗) over X, to show that
there is no duality gap.

Solution 5 Assume that there is a duality gap, i.e., q(µ∗) < f(x∗) , and assume that the
dual function q is differentiable at a dual optimal solution µ∗.

∂q(µ∗)

∂µj

≤ 0 ∀j, and µ∗
j

∂q(µ∗)

∂µj

= 0 ∀j.

By the properties of the dual function, if the infimum in the definition of q(µ) is attained
at a unique point, the gradient is given by the constraint values at the minimizer of the
Lagrangian. Specifically:

∇q(µ∗) = g(xµ∗),

where xµ∗ minimizes L(x, µ∗) over X.Since gj(xµ∗) ≤ 0 for all j, xµ∗ is a primal feasible
solution. Since µ∗

jgj(xµ∗) = 0 for all j, so we have complementary slackness.

q(µ∗) = inf
x∈X

L(x, µ∗) = L(xµ∗ , µ∗) = f(xµ∗) +
r∑

j=1

µ∗
jgj(xµ∗) = f(xµ∗).

Thus, q(µ∗) = f(xµ∗), which contradicts the assumption of a duality gap. Therefore, if there
is a duality gap, the dual function q cannot be differentiable at any dual optimal solution µ∗.
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