

Homework Assignment 3

Problem 1. (15 points)

Consider the class of problems

$$\begin{aligned} & \underset{x}{\text{minimize}} && f(x) \\ & \text{subject to} && x \in X, \quad g_j(x) \leq u_j, \quad j = 1, \dots, r, \end{aligned}$$

where $u = (u_1, \dots, u_r)$ is a vector parameterizing the right-hand side of the constraints. Given two distinct values \bar{u} and \tilde{u} of u , let \bar{f} and \tilde{f} be the corresponding optimal values, and assume that \bar{f} and \tilde{f} are finite. Assume further that $\bar{\mu}$ and $\tilde{\mu}$ are corresponding dual optimal solutions and that there is no duality gap. Show that

$$\tilde{\mu}'(\tilde{u} - \bar{u}) \leq \bar{f} - \tilde{f} \leq \bar{\mu}'(\tilde{u} - \bar{u}).$$

Solution 1

$$\begin{aligned} D(\mu) &= \inf_{x \in X} \{f(x) + \mu' g(x)\}. \\ q(\mu, u) &= \inf_{x \in X} \{f(x) + \mu'(g(x) - u)\} = D(\mu) - \mu'u. \\ \bar{f} &= p(\bar{u}) = \sup_{\mu \geq 0} (D(\mu) - \mu'\bar{u}) = D(\bar{\mu}) - \bar{\mu}'\bar{u} \\ \tilde{f} &= p(\tilde{u}) = \sup_{\mu \geq 0} (D(\mu) - \mu'\tilde{u}) = D(\tilde{\mu}) - \tilde{\mu}'\tilde{u} \end{aligned}$$

where $\bar{\mu}$ and $\tilde{\mu}$ is the corresponding dual optimal solutions. We have:

$$\begin{aligned} \bar{f} &= D(\bar{\mu}) - \bar{\mu}'\bar{u} \geq D(\tilde{\mu}) - \tilde{\mu}'\bar{u} = (\tilde{f} + \tilde{\mu}'\tilde{u}) - \tilde{\mu}'\bar{u} = \tilde{f} + \tilde{\mu}'(\tilde{u} - \bar{u}). \\ \implies \tilde{\mu}'(\tilde{u} - \bar{u}) &\leq \bar{f} - \tilde{f}. \end{aligned}$$

Otherside is similar.

Problem 2. (15 points)

Let $g_j : R^n \mapsto R, j = 1, \dots, r$, be convex functions over the nonempty convex subset of R^n . Show that the system

$$g_j(x) < 0, \quad j = 1, \dots, r,$$

has no solution within X if and only if there exists a vector $\mu \in R^r$ such that

$$\begin{aligned} \sum_{j=1}^r \mu_j &= 1, \quad \mu \geq 0, \\ \mu' g(x) &\geq 0, \quad \forall x \in X. \end{aligned}$$

Hint: Consider the convex program

$$\begin{aligned} &\underset{x,y}{\text{minimize}} \quad y \\ &\text{subject to} \quad x \in X, y \in R, g_j(x) \leq y, \quad j = 1, \dots, r, \end{aligned} \tag{1}$$

Solution 2 Consider the convex program

$$\begin{aligned} &\underset{x,y}{\text{minimize}} \quad y \\ &\text{subject to} \quad x \in X, y \in R, g_j(x) \leq y, \quad j = 1, \dots, r, \end{aligned} \tag{2}$$

Let v^* be the optimal value of this problem. The system $g_j(x) < 0$ for $j = 1, \dots, r$ has no solution in X if and only if for all $x \in X$, $\max_j g_j(x) \geq 0$. This implies that the optimal value of the auxiliary problem satisfies $v^* \geq 0$.

Now, consider the Lagrangian of the auxiliary problem:

$$L(x, y, \lambda) = y + \sum_{j=1}^r \lambda_j (g_j(x) - y) = y \left(1 - \sum_{j=1}^r \lambda_j \right) + \sum_{j=1}^r \lambda_j g_j(x).$$

The dual function:

$$q(\lambda) = \inf_{x \in X, y \in R} L(x, y, \lambda) = \begin{cases} \inf_{x \in X} \sum_{j=1}^r \lambda_j g_j(x) & \text{if } \sum_{j=1}^r \lambda_j = 1, \\ -\infty & \text{otherwise.} \end{cases}$$

Maximize $q(\lambda)$ subject to $\lambda \geq 0$ equivalent to:

$$\begin{aligned} &\underset{\lambda}{\text{maximize}} \quad \inf_{x \in X} \lambda' g(x) \\ &\text{subject to} \quad \sum_{j=1}^r \lambda_j = 1, \quad \lambda \geq 0. \end{aligned}$$

Let d^* be the dual optimal value. Then $v^* = d^*$. So

$$v^* \geq 0 \iff d^* \geq 0 \iff \sup_{\substack{\lambda \geq 0 \\ \sum \lambda_j = 1}} \left(\inf_{x \in X} \lambda' g(x) \right) \geq 0.$$

Since the feasible set for λ is compact, the supremum is attained by some vector μ . Thus, the condition is equivalent to the existence of $\mu \in R^r$ such that:

$$\sum_{j=1}^r \mu_j = 1, \quad \mu \geq 0, \quad \text{and} \quad \inf_{x \in X} \mu' g(x) \geq 0.$$

Problem 3. (25 points)

Consider the problem

$$\begin{aligned} & \underset{x}{\text{minimize}} && f(x) \\ & \text{subject to} && x \in X, \quad g_i(x) \leq 0, i = 1, \dots, r, \end{aligned}$$

where X is a convex set, and f and g_i s are convex over X . Assume that the problem has at least one feasible solution. Show that the following are equivalent.

- (i) The dual optimal value $q^* = \sup_{\mu \in R^r} q(\mu)$ is finite.
- (ii) The primal function p is proper.
- (iii) The set

$$M = \{(u, w) \in R^{r+1} \mid \text{there is an } x \in X \text{ such that } g(x) \leq u, f(x) \leq w\}$$

does not contain a vertical line.

Solution 3 *The primal function defined as:*

$$p(u) = \inf\{f(x) \mid x \in X, g(x) \leq u\}.$$

We have $p(0) < \infty$, and $p(u)$ is not identically $+\infty$.

(ii) \iff (iii): If p is proper, then $p(u) > -\infty$ for all u . Therefore, there is no u for which $(u, w) \in M$ for all w . Thus, M does not contain a vertical line. Conversely, if M does not contain a vertical line, then for every u , the values of w such that $(u, w) \in M$ are bounded below. Thus $p(u) > -\infty$ for all u . Since p is not identically $+\infty$, p is proper.

(ii) \implies (i): If p is proper and convex, the conjugate of a proper convex function is proper. By Weak Duality, $q(\mu) \leq p(0)$. Since p is proper and a feasible solution exists, $p(0)$ is finite. Thus $\sup q(\mu) \leq p(0) < \infty$.

(i) \implies (ii): If $q^* = \sup q(\mu)$ is finite, then $q(\mu) > -\infty$ for some μ . Suppose p is not proper. Since feasible solutions exist, this means there exists \bar{u} such that $p(\bar{u}) = -\infty$. Then, for any $\mu \geq 0$:

$$q(\mu) \leq \inf_x \{f(x) + \mu' g(x)\} \leq p(\bar{u}) + \mu' \bar{u} = -\infty.$$

This contradicts the assumption that $q^* > -\infty$. Thus, p must be proper.

Problem 4. (25 points)

Consider a proper convex function F of two vectors $x \in R^n$ and $y \in R^m$. For a fixed $(\bar{x}, \bar{y}) \in \text{dom}(F)$, let $\partial_x F(\bar{x}, \bar{y})$ and $\partial_y F(\bar{x}, \bar{y})$ be the subdifferentials of the functions $F(\cdot, \bar{y})$ and $F(\bar{x}, \cdot)$ at \bar{x} and \bar{y} , respectively.

(a) Show that

$$\partial F(\bar{x}, \bar{y}) \subset \partial_x F(\bar{x}, \bar{y}) \times \partial_y F(\bar{x}, \bar{y})$$

and give an example showing that the inclusion may be strict in general.

(b) Assume that F has the form

$$F(x, y) = h_1(x) + h_2(y) + h(x, y),$$

where h_1 and h_2 are proper convex functions, and h is convex, real-valued, and differentiable. Show that the formula of part (a) holds with equality.

Solution 4 (a) Let $(u, v) \in \partial F(\bar{x}, \bar{y})$. By the definition:

$$F(x, y) \geq F(\bar{x}, \bar{y}) + u'(x - \bar{x}) + v'(y - \bar{y}), \quad \forall x, y.$$

Set $y = \bar{y}$:

$$F(x, \bar{y}) \geq F(\bar{x}, \bar{y}) + u'(x - \bar{x}).$$

This implies $u \in \partial_x F(\bar{x}, \bar{y})$. Similarly we have $v \in \partial_y F(\bar{x}, \bar{y})$. Thus, $\partial F(\bar{x}, \bar{y}) \subset \partial_x F(\bar{x}, \bar{y}) \times \partial_y F(\bar{x}, \bar{y})$.

Example: Consider $F(x, y) = |x + y|$ at $(\bar{x}, \bar{y}) = (0, 0)$. The subdifferential of F at $(0, 0)$ consists of vectors (u, v) such that $|x + y| \geq ux + vy$. This holds if and only if $u = v$ and $|u| \leq 1$. Thus, $\partial F(0, 0) = \{(u, u) \mid -1 \leq u \leq 1\}$. But

$$\begin{aligned} F(x, 0) = |x| &\implies \partial_x F(0, 0) = [-1, 1] \\ F(0, y) = |y| &\implies \partial_y F(0, 0) = [-1, 1] \\ \implies \partial F(0, 0) &\subsetneq \partial_x F(0, 0) \times \partial_y F(0, 0) = [-1, 1] \times [-1, 1]. \end{aligned}$$

(b) Let $F(x, y) = h_1(x) + h_2(y) + h(x, y)$, we have:

$$\partial F(x, y) = \partial(h_1(x) + h_2(y)) + \nabla h(x, y).$$

Since h_1 depends only on x and h_2 only on y :

$$\partial(h_1(x) + h_2(y)) = \partial h_1(x) \times \partial h_2(y).$$

Also, $\nabla h(x, y) = (\nabla_x h(x, y), \nabla_y h(x, y))$. Thus:

$$\partial F(\bar{x}, \bar{y}) = \{(u_1 + \nabla_x h(\bar{x}, \bar{y}), u_2 + \nabla_y h(\bar{x}, \bar{y})) \mid u_1 \in \partial h_1(\bar{x}), u_2 \in \partial h_2(\bar{y})\}.$$

And:

$$\begin{aligned} \partial_x F(\bar{x}, \bar{y}) &= \partial_x(h_1(x) + h_2(\bar{y}) + h(\bar{x}, \bar{y})) = \partial h_1(\bar{x}) + \nabla_x h(\bar{x}, \bar{y}), \\ \partial_y F(\bar{x}, \bar{y}) &= \partial_y(h_1(\bar{x}) + h_2(y) + h(\bar{x}, \bar{y})) = \partial h_2(\bar{y}) + \nabla_y h(\bar{x}, \bar{y}). \end{aligned}$$

So:

$$\partial_x F \times \partial_y F = (\partial h_1(\bar{x}) + \nabla_x h) \times (\partial h_2(\bar{y}) + \nabla_y h) = \partial F(\bar{x}, \bar{y}).$$

Problem 5. (20 points)

(Note: This exercise shows how a duality gap results in nondifferentiability of the dual function.)

Consider the problem

$$\begin{aligned} & \underset{x}{\text{minimize}} && f(x) \\ & \text{subject to} && x \in X, \quad g(x) \leq 0, \end{aligned}$$

and assume that for all $\mu \geq 0$, the infimum of the Lagrangian $L(x, \mu)$ over X is attained by at least one $x_\mu \in X$. Show that if there is a duality gap, then the dual function $q(\mu) = \inf_{x \in X} L(x, \mu)$ is nondifferentiable at every dual optimal solution.

Hint: If q is differentiable at a dual optimal solution μ^* , by the theory of Section 5.3 in the textbook, we must have $\partial q(\mu^*) / \partial \mu_j \leq 0$ and $\mu_j^* \partial q(\mu^*) / \partial \mu_j = 0$ for all j . Use optimality conditions for μ^* , together with any vector x_{μ^*} that minimizes $L(x, \mu^*)$ over X , to show that there is no duality gap.

Solution 5 Assume that there is a duality gap, i.e., $q(\mu^*) < f(x^*)$, and assume that the dual function q is differentiable at a dual optimal solution μ^* .

$$\frac{\partial q(\mu^*)}{\partial \mu_j} \leq 0 \quad \forall j, \quad \text{and} \quad \mu_j^* \frac{\partial q(\mu^*)}{\partial \mu_j} = 0 \quad \forall j.$$

By the properties of the dual function, if the infimum in the definition of $q(\mu)$ is attained at a unique point, the gradient is given by the constraint values at the minimizer of the Lagrangian. Specifically:

$$\nabla q(\mu^*) = g(x_{\mu^*}),$$

where x_{μ^*} minimizes $L(x, \mu^*)$ over X . Since $g_j(x_{\mu^*}) \leq 0$ for all j , x_{μ^*} is a primal feasible solution. Since $\mu_j^* g_j(x_{\mu^*}) = 0$ for all j , so we have complementary slackness.

$$q(\mu^*) = \inf_{x \in X} L(x, \mu^*) = L(x_{\mu^*}, \mu^*) = f(x_{\mu^*}) + \sum_{j=1}^r \mu_j^* g_j(x_{\mu^*}) = f(x_{\mu^*}).$$

Thus, $q(\mu^*) = f(x_{\mu^*})$, which contradicts the assumption of a duality gap. Therefore, if there is a duality gap, the dual function q cannot be differentiable at any dual optimal solution μ^* .