
Homework Assignment 1

Problem 1. (25 points)
(a) Let C be a nonempty subset of Rn, and let λ1 and λ2 be positive scalars. Show that if
C is convex, then (λ1 + λ2)C = λ1C + λ2C. Show by example that this need not be true
when C is not convex.
(b) Show that the intersection ∩i∈ICi of a collection {Ci | i ∈ I} of cones is a cone.
(c) Show that the image and the inverse image of a cone under a linear transformation is a
cone.
(d) Show that the vector sum C1 + C2 of two cones C1 and C2 is a cone.
(e) Show that a subset C is a convex cone if and only if it is closed under addition and
positive scalar multiplication, i.e., C + C ⊂ C, and γC ⊂ C for all γ > 0.
Answer:(a): Let x = λ1c1 + λ2c2 ∈ λ1C + λ2C. Consider the point c = λ1

λ1+λ2
c1 +

λ2

λ1+λ2
c2

and α = λ1

λ1+λ2
∈ (0, 1). Then c = αc1 + (1 − α)c2 ∈ C. Thus x = (λ1 + λ2)c ∈ (λ1 + λ2)C.

So λ1C + λ2C ⊂ (λ1 + λ2)C. Now let x ∈ (λ1 + λ2)C. Then x = (λ1 + λ2)c for some
c ∈ C. Consider the points c1 = c2 = c. Then x = λ1c1 + λ2c2 ∈ λ1C + λ2C. So
(λ1 + λ2)C ⊂ λ1C + λ2C. Thus we have (λ1 + λ2)C = λ1C + λ2C.

Consider the non-convex set C = {0, 1} in R. Let λ1 = 1 and λ2 = 1. (λ1 + λ2)C =
(1+1)C = 2C = {2 · 0, 2 · 1} = {0, 2}. λ1C +λ2C = 1C +1C = C +C = {x+ y | x ∈ C, y ∈
C} = {0 + 0, 0 + 1, 1 + 0, 1 + 1} = {0, 1, 2}. Since {0, 2} 6= {0, 1, 2}, the equality does not
hold.

(b): Let x, y ∈ ∩i∈ICi and α, β ≥ 0. Then x, y ∈ Ci for all i ∈ I. Since each Ci is a cone,
αx+ βy ∈ Ci for all i ∈ I. Thus αx+ βy ∈ ∩i∈ICi. So ∩i∈ICi is a cone.

(c): Let C be a cone in Rn and A be a linear transformation from Rn to Rm. Let
x, y ∈ A(C) and α, β ≥ 0. Then there exist u, v ∈ C such that x = A(u) and y = A(v).
Since C is a cone, αu+ βv ∈ C. Thus αx+ βy = αA(u) + βA(v) = A(αu+ βv) ∈ A(C). So
A(C) is a cone.

(d): Let x, y ∈ C1 + C2 and α, β ≥ 0. Then there exist u1, v1 ∈ C1 and u2, v2 ∈ C2

such that x = u1 + u2 and y = v1 + v2. Since C1 and C2 are cones, αu1 + βv1 ∈ C1 and
αu2+βv2 ∈ C2. Thus αx+βy = α(u1+u2)+β(v1+v2) = (αu1+βv1)+(αu2+βv2) ∈ C1+C2.
So C1 + C2 is a cone.

(e): Suppose C is a convex cone. Then for any x, y ∈ C and α, β ≥ 0, we have αx+βy ∈
C. Setting α = β = 1, we get x+ y ∈ C. Thus C +C ⊆ C. Setting y = 0 and β = 0, we get
αx ∈ C for all α > 0. Thus γC ⊆ C for all γ > 0.
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Problem 2. (15 points)
Let C be a nonempty convex subset of Rn. Let also f = (f1, . . . , fm), where fi : C 7→ R,
i = 1, . . . ,m, are convex functions, and let g : Rm 7→ R be a function that is convex and
monotonically nondecreasing over a convex set that contains the set {f(x) | x ∈ C}, in
the sense that for all u1, u2 in this set such that u1 ≤ u2, we have g (u1) ≤ g (u2). Show
that the function h defined by h(x) = g(f(x)) is convex over C. If in addition, m = 1, g is
monotonically increasing and f is strictly convex, then h is strictly convex.
Answer: For any x, y ∈ C and α ∈ [0, 1], f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y). So
g(f(αx+(1−α)y)) ≤ g(αf(x)+(1−α)f(y)). Using the fact that g itself is a convex function,
we have g(αf(x) + (1 − α)f(y)) ≤ αg(f(x)) + (1 − α)g(f(y)). Chaining these inequalities
together confirms that h is convex.

To the second case, the strict convexity of f makes the first inequality strict, f(αx+(1−
α)y) < αf(x)+ (1−α)f(y). Since g is monotonically increasing, this strictness is preserved,
leading to g(f(αx+(1−α)y)) < g(αf(x)+(1−α)f(y)). This, combined with the convexity
of g, results in the overall strict inequality h(αx + (1 − α)y) < αh(x) + (1 − α)h(y), thus
proving that h is strictly convex.
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Problem 3. (20 points)
(a) Consider the quadratic program

minimize
x

1/2|x|2 + c′x

subject to Ax = 0

where c ∈ Rn and A is an m × n matrix of rank m. Use the Projection Theorem to show
that

x∗ = −
(
I − A′ (AA′)

−1
A
)
c

is the unique solution.
(b) Consider the more general quadratic program

minimize
x

1/2(x− x̄)′Q(x− x̄) + c′(x− x̄)

subject to Ax = b

where c and A are as before, Q is a symmetric positive definite matrix, b ∈ Rm, and x̄ is a
vector in Rn, which is feasible, i.e., satisfies Ax̄ = b. Use the transformation y = Q1/2(x− x̄)
to write this problem in the form of part (a) and show that the optimal solution is

x∗ = x̄−Q−1 (c− A′λ)

where λ is given by
λ =

(
AQ−1A′)−1

AQ−1c

(c) Apply the result of part (b) to the program

minimize
x

1/2x′Qx+ c′x)

subject to Ax = b

and show that the optimal solution is

x∗ = −Q−1
(
c− A′λ− A′ (AQ−1A′)−1

b
)

Answer: (a): 1
2
|x|2+ c′x is equivalent to the distance |x− (−c)|. The problem can therefore

be interpreted as finding the point in the subspace defined by Ax = 0 that is closest to the
point −c. By the Projection Theorem, the unique solution x∗ is the orthogonal projection
of −c onto this subspace N(A). Since the projection matrix onto the range space of A′ is
A′(AA′)−1A, the projection of −c onto N(A) is x∗ = (I − A′(AA′)−1A)(−c).

(b): Use transformation y = Q1/2(x− x̄). The objective function’s quadratic term trans-
forms into 1

2
|y|2, and the linear term becomes (Q−1/2c)′y. This transformed problem has

the exact form as the problem in part (a), allowing us to directly apply its solution to find
the optimal y∗. Transforming back via x∗ − x̄ = Q−1/2y∗ we have x∗ − x̄ = −Q−1c +
Q−1A′(AQ−1A′)−1AQ−1c. By using the given definition for λ as λ = (AQ−1A′)−1AQ−1c, the
expression simplifies to the final optimal solution x∗ = x̄−Q−1(c− A′λ).

(c): To apply the result of part (b) to the program that minimizes 1
2
x′Qx + c′x subject

to Ax = b, we must align its objective function with the form from part (b). The objective
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in part (b) can be expanded, ignoring constants, to be equivalent to minimizing 1
2
x′Qx +

(cb −Qx̄)′x. To match the objective of the current problem, we must set cb −Qx̄ = c, which
implies cb = c + Qx̄ for some feasible x̄. We now use the solution formula from part (b),
x∗ = x̄ − Q−1(cb − A′λb), where λb = (AQ−1A′)−1AQ−1cb. Using the feasibility condition
Ax̄ = b, we find that λb = (AQ−1A′)−1(AQ−1c+ b).
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Problem 4. (20 points)
(a) Let C be a nonempty convex cone. Show that cl(C) and ri(C) is also a convex cone.
(b) Let C = cone ({x1, . . . , xm}). Show that

ri(C) =

{
m∑
i=1

aixi | ai > 0, i = 1, . . . ,m

}
.

Answer: (a): For cl(C), the closure of a convex set is convex. To show it is a cone, let
x ∈ cl(C) and λ > 0. There exists a sequence {xk} in C converging to x. Since C is a cone,
the sequence {λxk} also lies in C, and it converges to λx, which implies λx ∈ cl(C). For
ri(C), the relative interior of a convex set is also convex. To show it is a cone, let x ∈ ri(C)
and λ > 0. This means there is an open ball around x, intersected with the affine hull
aff(C), that is contained within C. By scaling this ball and its center by the factor λ, we
can construct a new open ball centered at λx. This new ball is also contained in C. This
implies that λx ∈ ri(C), confirming that ri(C) is a convex cone.

(b): To show that for C = cone({x1, ..., xm}), the relative interior is ri(C) = {
∑m

i=1 aixi|ai >
0, i = 1, ...,m}, we can interpret the cone C as the image of the non-negative orthant
in Rm, denoted Rm

+ , under the linear transformation A whose columns are the vectors
x1, ..., xm. A standard result from convex analysis states that for a linear map A and a
convex set S, the relative interior of the image is the image of the relative interior, i.e.,
ri(A(S)) = A(ri(S)). In this context, C = A(Rm

+ ), and the relative interior of the non-
negative orthant, ri(Rm

+ ), is the set of all vectors with strictly positive components. Applying
the theorem, ri(C) = A(ri(Rm

+ )), which is precisely the set of all linear combinations of the
vectors x1, ..., xm with strictly positive coefficients.
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Problem 5. (10 points)
Let X be a nonempty bounded subset of Rn. Show that

cl(conv(X)) = conv(cl(X)).

In particular, if X is compact, then conv(X) is compact.
Answer: To show conv(cl(X)) ⊆ cl(conv(X)), consider y =

∑
αiyi ∈ conv(cl(X)) where

points yi ∈ cl(X). For each yi, there exists a sequence {xi,j} in X that converges to yi. The
sequence of points zj =

∑
αixi,j lies entirely in conv(X), and this sequence converges to y.

Therefore, y must be in the closure, cl(conv(X)).
To show cl(conv(X)) ⊆ conv(cl(X)), we note that since X is bounded, its closure cl(X) is

compact. The convex hull of a compact set is also compact, which implies that conv(cl(X)) is
a closed set. Since X ⊆ cl(X), it follows that conv(X) ⊆ conv(cl(X)). Because conv(cl(X))
is a closed set containing conv(X), it must also contain its closure. The equality is thus
established.

If X is compact, it is closed and bounded. Since X is closed, cl(X) = X, so the equality
gives cl(conv(X)) = conv(X), meaning conv(X) is closed. The convex hull of a bounded set
is bounded, so conv(X) is both closed and bounded, and therefore compact.
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Problem 6. (10 points)
Let C1 and C2 be convex sets. Show that

C1 ∩ ri(C2) 6= ∅ if and only if ri(C1 ∩ aff(C2)) ∩ ri(C2) 6= ∅.

Answer: “⇐=”: if a point x exists in ri(C1 ∩ aff(C2)) ∩ ri(C2), then by definition x is in
ri(C2) and also in C1 ∩ aff(C2), which implies x ∈ C1. Therefore, x belongs to C1 ∩ ri(C2),
so the intersection is nonempty.

“=⇒”: assume there exists a point x ∈ C1 ∩ ri(C2). This means x ∈ C1 and x ∈ ri(C2).
Since any point in the relative interior of a set must also be in its affine hull, x ∈ aff(C2).
Consequently, x belongs to the set C = C1 ∩ aff(C2). We now have a nonempty intersection
between the convex set C and the relative interior of the convex set C2. Since intersection
C∩ri(C2) is nonempty, it follows that the intersection of their relative interiors ri(C)∩ri(C2)
which is equal to ri(C1 ∩ aff(C2)) ∩ ri(C2), must also be nonempty.
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