Homework Assignment 1

Problem 1. (25 points)

(a) Let C' be a nonempty subset of R™, and let A\; and Ay be positive scalars. Show that if
C' is convex, then (A; + Ay) C' = A\ C' + X\2C. Show by example that this need not be true
when C' is not convex.

(b) Show that the intersection N;e;C; of a collection {C; | i € I} of cones is a cone.

(c) Show that the image and the inverse image of a cone under a linear transformation is a
cone.

(d) Show that the vector sum C} 4+ Cy of two cones C; and Cj is a cone.

(e) Show that a subset C' is a convex cone if and only if it is closed under addition and
positive scalar multiplication, i.e., C'+ C C C', and vC' C C for all v > 0.

Answer:(a): Let x = Ajc1 + Aacy € A\C + X\oC'. Consider the point ¢ = A11—1/\201 + >\1)_\’_—2>\2C2
and o = /\I)J‘:M € (0,1). Then ¢ = ac; + (1 —a)cg € C. Thus x = (A1 + Ay)c € (A1 + \2)C.
So MC + XC C (A + A)C. Now let 2 € (A + A\2)C. Then x = (A + A2)c for some
¢ € C. Consider the points ¢; = ¢ = ¢. Then = = Acg + Xaca € MC + AC. So
(/\1 + )\2)0 C )\10 + AQC Thus we have ()\1 + /\2) C= )\10 + AQC

Consider the non-convex set C' = {0,1} in R. Let Ay = 1 and Ay = 1. (A1 + A\2)C =
(1+1)C=20={2-0,2-1} ={0,2}. MC+C=1C+1C=C+C={z+ylzxeCyc
C}y={0+0,0+1,1+0,1+1} ={0,1,2}. Since {0,2} # {0,1,2}, the equality does not
hold.

(b): Let z,y € Nie;C; and o, 8 > 0. Then x,y € C; for all i € I. Since each C; is a cone,
axr + Py € C; for all i € I. Thus ax + By € NierC;. So NierC; is a cone.

(c): Let C be a cone in R™ and A be a linear transformation from R"™ to R™. Let
xz,y € A(C) and o, 8 > 0. Then there exist u,v € C such that z = A(u) and y = A(v).
Since C'is a cone, au+ fv € C. Thus az + fy = aA(u) + BA(v) = A(au + Bv) € A(C). So
A(C) is a cone.

(d): Let z,y € C1 + Cy and «, > 0. Then there exist uj,v; € Cy and ug, vy € Cy
such that x = u; + us and y = vy + vo. Since Cy and Cy are cones, au; + fv; € C; and
aug+Pvy € Cy. Thus ax+fy = a(uy+ug)+B(v1+v2) = (auy+Bvy) + (qus+Puy) € C1+Cs.
So C7 + C5 is a cone.

(e): Suppose C'is a convex cone. Then for any z,y € C' and «, § > 0, we have ax+ fy €
C. Settinga=p=1,weget c+y € C. Thus C+C C C. Setting y = 0 and g = 0, we get
ax € C for all a > 0. Thus vC' C C for all v > 0.




Problem 2. (15 points)

Let C be a nonempty convex subset of R™. Let also f = (f1,..., fm), where f; : C — R,
1 =1,...,m, are convex functions, and let ¢ : R™ +— R be a function that is convex and
monotonically nondecreasing over a convex set that contains the set {f(z) | x € C}, in
the sense that for all uj,us in this set such that u; < uy, we have g (u1) < g(ug). Show
that the function h defined by h(z) = g(f(x)) is convex over C. If in addition, m =1, g is
monotonically increasing and f is strictly convex, then A is strictly convex.

Answer: For any z,y € C and a € [0,1], f(ax + (1 — a)y) < af(z)+ (1 — a)f(y). So
g(flaz+(1—a)y)) < glaf(z)+(1—a)f(y)). Using the fact that g itself is a convex function,
we have g(af(z) + (1 — a)f(y)) < ag(f(z)) + (1 — a)g(f(y)). Chaining these inequalities
together confirms that h is convex.

To the second case, the strict convexity of f makes the first inequality strict, f(az+ (1 —
a)y) < af(z)+ (1 —a)f(y). Since g is monotonically increasing, this strictness is preserved,
leading to g(f(az+ (1 —a)y)) < g(af(x)+(1—a)f(y)). This, combined with the convexity
of g, results in the overall strict inequality h(az + (1 — a)y) < ah(x) + (1 — a)h(y), thus
proving that h is strictly convex.



Problem 3. (20 points)

(a) Consider the quadratic program

minimize  1/2|z? + dx
subject to Az =10

where ¢ € R™ and A is an m X n matrix of rank m. Use the Projection Theorem to show
that
o= — (1 _ A (AN A) ¢

is the unique solution.
(b) Consider the more general quadratic program

minil,mize 1/2(x —2)Q(zx — z) + (z — )

subject to Ax =10

where ¢ and A are as before, () is a symmetric positive definite matrix, b € R™, and 7 is a
vector in R", which is feasible, i.e., satisfies A7 = b. Use the transformation y = Q'/?(z — z)
to write this problem in the form of part (a) and show that the optimal solution is

=72 -Q '(c— AN

where \ is given by
A= (AQTA) T AQ e
(c) Apply the result of part (b) to the program

minimize 1/22'Qx + cx)
subject to Ax =b

and show that the optimal solution is

= Q! (c — AN A (AQT AN b)

Answer: (a): 3|z|*+ 'z is equivalent to the distance |z — (—c)|. The problem can therefore
be interpreted as finding the point in the subspace defined by Ax = 0 that is closest to the
point —c. By the Projection Theorem, the unique solution z* is the orthogonal projection
of —c onto this subspace N(A). Since the projection matrix onto the range space of A’ is
A'(AA")7LA, the projection of —c onto N(A) is x* = (I — A/(AA)7TA)(—c).

(b): Use transformation y = Q'/2(z — ). The objective function’s quadratic term trans-
forms into 1|y|?, and the linear term becomes (Q~'/?c)'y. This transformed problem has
the exact form as the problem in part (a), allowing us to directly apply its solution to find
the optimal y*. Transforming back via z* — z = Q Y%y* we have 2* — 7 = —Q 'c +
QA (AQTA)LAQ'c. By using the given definition for A as A = (AQ*A")"LAQ ¢, the
expression simplifies to the final optimal solution z* = 7 — Q~!(c — A’\).

(c): To apply the result of part (b) to the program that minimizes %x’ Qx + ' x subject
to Ax = b, we must align its objective function with the form from part (b). The objective
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in part (b) can be expanded, ignoring constants, to be equivalent to minimizing %x’ Qz +
(cp — Qx)'z. To match the objective of the current problem, we must set ¢, — Q= = ¢, which
implies ¢, = ¢ + Q% for some feasible Z. We now use the solution formula from part (b),
r* =7 — Qe — A'Ny), where Ny, = (AQ'A")LAQ ¢, Using the feasibility condition
AT = b, we find that \, = (AQTA)"HAQ 'c+ ).



Problem 4. (20 points)

(a) Let C be a nonempty convex cone. Show that cl(C') and ri(C) is also a convex cone.
(b) Let C' = cone ({x1,...,2y,}). Show that

ri(C) = {Zaixi |a; >0,i= 1,...,m}.
i=1

Answer: (a): For cl(C), the closure of a convex set is convex. To show it is a cone, let
x € cl(C) and A > 0. There exists a sequence {x} in C converging to x. Since C is a cone,
the sequence {Az;} also lies in C, and it converges to Az, which implies Az € cl(C). For
ri(C'), the relative interior of a convex set is also convex. To show it is a cone, let z € ri(C')
and A > 0. This means there is an open ball around =z, intersected with the affine hull
aff(C'), that is contained within C'. By scaling this ball and its center by the factor A, we
can construct a new open ball centered at Axz. This new ball is also contained in C'. This
implies that Az € ri(C'), confirming that ri(C) is a convex cone.
(b): To show that for C' = cone({z1, ..., ,,, }), the relative interior is ri(C) = {d> " | a;x;a; >

0,i = 1,...,m}, we can interpret the cone C as the image of the non-negative orthant
in R™, denoted R, under the linear transformation A whose columns are the vectors

T1, ..., Trp. A standard result from convex analysis states that for a linear map A and a
convex set S, the relative interior of the image is the image of the relative interior, i.e.,
ri(A(S)) = A(ri(S)). In this context, C' = A(RT), and the relative interior of the non-
negative orthant, ri(R"?), is the set of all vectors with strictly positive components. Applying
the theorem, ri(C') = A(ri(R7")), which is precisely the set of all linear combinations of the
vectors x1, ..., x,, with strictly positive coefficients.



Problem 5. (10 points)
Let X be a nonempty bounded subset of R"™. Show that

cl(conv(X)) = conv(cl(X)).
In particular, if X is compact, then conv(X) is compact.

Answer: To show conv(cl(X)) C cl(conv(X)), consider y = > ayy; € conv(cl(X)) where
points y; € cl(X). For each y;, there exists a sequence {x; ;} in X that converges to y;. The
sequence of points z; = > a;x; ; lies entirely in conv(X), and this sequence converges to y.
Therefore, y must be in the closure, cl(conv(X)).

To show cl(conv (X)) C conv(cl(X)), we note that since X is bounded, its closure cl(X) is
compact. The convex hull of a compact set is also compact, which implies that conv(cl(X)) is
a closed set. Since X C cl(X), it follows that conv(X) C conv(cl(X)). Because conv(cl(X))
is a closed set containing conv(X), it must also contain its closure. The equality is thus
established.

If X is compact, it is closed and bounded. Since X is closed, cl(X) = X, so the equality
gives cl(conv(X)) = conv(X), meaning conv(X) is closed. The convex hull of a bounded set
is bounded, so conv(X) is both closed and bounded, and therefore compact.



Problem 6. (10 points)
Let 7 and Cy be convex sets. Show that

C1 Nr1i(Cy) # 0 if and only if ri(Cy Naff(Cy)) Nri(Cy) # 0.

Answer: “«<=": if a point z exists in ri(C; N aff(Cy)) Nri(Cy), then by definition z is in
ri(Cy) and also in Cy N aff(Cy), which implies x € Cy. Therefore, x belongs to C; Nri(Csy),
so the intersection is nonempty.

“=": assume there exists a point z € C; Nri(Cy). This means z € C} and z € ri(Cy).
Since any point in the relative interior of a set must also be in its affine hull, = € aff(Cy).
Consequently, x belongs to the set C' = Cy Naff(Cy). We now have a nonempty intersection
between the convex set C' and the relative interior of the convex set (5. Since intersection
C'Nri(Cy) is nonempty, it follows that the intersection of their relative interiors ri(C') Nri(Cy)
which is equal to ri(Cy Naff(Cy)) Nri(Cy), must also be nonempty.



